Page 35 - Basic Structured Grid Generation
P. 35

24  Basic Structured Grid Generation

                          The contravariant base vectors are
                                                  1           1
                                              1
                                             g = √ g 2 × k = √ (iy η − jx η ),
                                                   g           g
                                                  1           1
                                              2
                                             g = √ k × g = √ (−iy ξ + jx ξ ),             (1.161)
                                                         1
                                                   g           g
                                              3
                                             g = k,
                        and in comparison with eqn (1.38) we have
                                     √              √               √            √
                              ξ x = y η / g,  ξ y =−x η / g,  η x =−y ξ / g,  η y = x ξ / g.  (1.162)
                          The components of the contravariant metric tensor are given by
                                         11   12   13                        
                                         g    g   g            g 22 /g  −g 12 /g  0
                                        g 12  g 22  g  23   =   −g 12 /g  g 11 /g  0   .  (1.163)
                                         g 13  g 23  g 33       0       0     1
                          Note that the two-dimensional version of eqn (1.136) is
                                 ∂ √    1    ∂ √   2     ∂  2        ∂      1
                                   ( gg ) +    ( gg ) =   (g × k) +    (k × g ) = 0.      (1.164)
                                 ∂ξ         ∂η          ∂ξ          ∂η
                          From eqn (1.141) we have the two-dimensional form for ∇ϕ:

                                      1     ∂ √  1     ∂ √    2
                               ∇ϕ = √        ( gg ϕ) +   ( gg ϕ)
                                       g  ∂ξ           ∂η
                                      1     ∂                1     ∂
                                   = √       [(iy η − jx η )ϕ] + √  [−iy ξ + jx ξ ]ϕ
                                       g  ∂ξ                  g  ∂η
                                       1     ∂       ∂           1      ∂        ∂
                                   = i√      (y η ϕ) −  (y ξ ϕ) + j√  −  (x η ϕ) +  (x ξ ϕ)  (1.165)
                                       g   ∂ξ        ∂η           g    ∂ξ        ∂η
                        in conservative form. Thus the cartesian components of ∇ϕ are given by
                                              ∂ϕ     1     ∂       ∂
                                                 = √       (y η ϕ) −  (y ξ ϕ)
                                              ∂x     g   ∂ξ       ∂η

                        and
                                             ∂ϕ     1     ∂         ∂
                                                = √     −   (x η ϕ) +  (x ξ ϕ)            (1.166)
                                             ∂y      g   ∂ξ        ∂η
                        in conservative form. By further differentiation, or directly from eqn (1.13), we obtain
                        the non-conservative forms
                                                 ∂ϕ    1     ∂ϕ     ∂ϕ
                                                    = √    y η  − y ξ
                                                 ∂x     g    ∂ξ     ∂η
                        and
                                               ∂ϕ     1      ∂ϕ      ∂ϕ
                                                  = √     −x η   + x ξ   .                (1.167)
                                               ∂y      g      ∂ξ     ∂η
   30   31   32   33   34   35   36   37   38   39   40