Page 36 - Basic Structured Grid Generation
P. 36

Mathematical preliminaries – vector and tensor analysis  25

                          From eqns (1.138) and (1.161) we deduce a conservative form for the diver-
                        gence ∇· u:
                                            1     ∂ √  1       ∂ √   2
                                    ∇· u = √      ( gg · u) +    ( gg · u)
                                             g  ∂ξ            ∂η
                                            1     ∂               ∂
                                         = √      (y η U 1 − x η U 2 ) +  (−y ξ U 1 + x ξ U 2 ) ,  (1.168)
                                             g  ∂ξ                ∂η
                        where u = U 1 i + U 2 j. Again by further differentiation, or directly from eqn (1.134),
                        we deduce the non-conservative form:
                                              1     ∂U 1    ∂U 2     ∂U 1    ∂U 2
                                      ∇· u = √    y η   − x η   − y ξ    + x ξ    .       (1.169)
                                               g     ∂ξ      ∂ξ      ∂η       ∂η
                          A similar treatment of eqns (1.145) and (1.146) yields a conservative form for ∇×u:

                                           1     ∂                ∂
                                 ∇× u = k√        (x η U 1 + y η U 2 ) −  (x ξ U 1 + y ξ U 2 )  (1.170)
                                            g  ∂ξ                ∂η
                        and the non-conservative form

                                               1     ∂U 1    ∂U 2     ∂U 1    ∂U 2
                                     ∇× u = k√     x η   + y η   − x ξ    − y ξ    .      (1.171)
                                                g     ∂ξ      ∂ξ      ∂η       ∂η
                          Making use of both eqns (1.166) and (1.168), we obtain the two-dimensional Lapla-
                              2
                        cian ∇ ϕ =∇ · (∇ϕ) in conservative form:
                                 1 ∂     y η     ∂     ∂          x η     ∂       ∂
                           2
                         ∇ ϕ = √       √       [y η ϕ]−  [y ξ ϕ] − √  −   [x η ϕ]+  [x ξ ϕ]
                                  g ∂ξ   g   ∂ξ       ∂η           g    ∂ξ        ∂η
                                  1 ∂      y ξ     ∂      ∂          x ξ     ∂        ∂
                                +√       −√       [y η ϕ]−  [y ξ ϕ] + √  −    [x η ϕ]+  [x ξ ϕ]  .
                                   g ∂η     g   ∂ξ       ∂η           g    ∂ξ        ∂η
                                                                                          (1.172)
                          Note that eqn (1.152) also gives, making use of eqn (1.163), the form
                                         1     ∂ 2           ∂ 2            ∂ 2
                                   2               g 22            g 12          g 11
                                  ∇ ϕ = √          √ ϕ − 2         √ ϕ +         √ ϕ
                                          g  ∂ξ 2   g       ∂ξ∂η     g     ∂η 2   g
                                           ∂  √    2       ∂  √   2
                                        −    [( g∇ ξ)ϕ]−    [( g∇ η)ϕ] .                  (1.173)
                                          ∂ξ              ∂η

                        Exercise 15. Using eqns (1.111), (1.162), and (1.163), show that

                             2    g 22                 g 12                g 11
                           ∇ ξ =      (x η y ξξ − y η x ξξ ) − 2  (x η y ξη − y η x ξη ) +  (x η y ηη − y η x ηη ),
                                  g 3/2                g 3/2               g 3/2
                                                                                          (1.174)
                             2    g 22                 g 12                g 11
                           ∇ η =      (y ξ x ξξ − x ξ y ξξ ) − 2  (y ξ x ξη − x ξ y ξη ) +  (y ξ x ηη − x ξ y ηη ).
                                  g 3/2                g 3/2               g 3/2
                                                                                          (1.175)
   31   32   33   34   35   36   37   38   39   40   41