Page 84 - Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics
P. 84

Dynamics  of Inviscid  Fluids                                                               69



                                                 T=0.15  |  %?
                                      Oe
                                                                         T=0.20
                                               aN              K  \


                                                                                x
                                    -0.2
                                                        XI  _g2
                                         o      of        1     0       oO8       1
                                      02                     0.2
                                       >          T=0.25  |  >           T=0.30
                                                               ;
                                        O  hom»  Sw
                                    -0.2                                       x


                                                          1
                                                 0.5    x!  _o2                   1
                                                                0
                                                                        0.5
                            Figure  2.2.   Evolution  of  a  vortex  sheet  after  perturbation




                                                          T=0.30













                                                                             x



                                         0.4      0.45      0.5      0.55      0.6


                      Figure  2.3.   Evolution  of  a  vortex  sheet  after  perturbation,  7  =  0.30






                 drawnow;end;
                 The  differential  system  is  described  by  the  function  M-file  edrol  .m
                 function  yprime=edrol  (x,y);
                 global  m;  disp(x);  yprime=zeros(2*m+2,1);

                 for  j=i:m  for  k=1:m  if  k”  =j
                 yprime  (j)=yprime  (j)+1/m*sinh(2*pix(y  (m+i+j)...
                 ~y  (mt+it+k)  ))/(cosh(2*pi*
                                                     (Cy  Gnt+i+j)-y (mtitk)))...
                 -cos(2*pi*(y(j)-y(k))));
                 yprime(m+1+j)=yprime  (m+1+j)—-1/m*sin(2*pi*(y(j)...
                 -y  (k)))/(cosh(2*pix  (Cy  (m+1+j)-y(mtitk)))...
                 -—cos(2*pi*(y(j)-y(k))));
                 yprime  (m+1)=yprime(1);  yprime(2*m+2)=yprime  (mt2)  ;

                 end;    end;    end;
   79   80   81   82   83   84   85   86   87   88   89