Page 27 - Big Data Analytics for Intelligent Healthcare Management
P. 27
FURTHER READING 17
[21] M.S. Hossain, M. Moniruzzaman, G. Muhammad, A. Ghoneim, A. Alamri, Big data-driven service compo-
sition using parallel clustered particle swarm optimization in mobile environment, IEEE Trans. Serv. Com-
put. 9 (5) (2016) 806–817.
[22] K.C. Lin, K.Y. Zhang, Y.H. Huang, J.C. Hung, N. Yen, Feature selection based on an improved cat swarm
optimization algorithm for big data classification, J. Supercomput. 72 (8) (2016) 3210–3221.
[23] S. Cheng, Q. Zhang, Q. Qin, Big data analytics with swarm intelligence, Ind. Manag. Data Syst. 116 (4)
(2016) 646–666.
[24] S. Banerjee, Y. Badr, Evaluating decision analytics from mobile big data using rough set based ant colony,
in: Mobile Big Data, Springer, Cham, 2018, pp. 217–231.
[25] X. Pan, Application of improved ant colony algorithm in intelligent medical system: from the perspective of
big data, Chem. Eng. 51 (2016) 523–528.
[26] B. Hu, Y. Dai, Y. Su, P. Moore, X. Zhang, C. Mao, J. Chen, L. Xu, Feature selection for optimized high-
dimensional biomedical data using the improved shuffled frog leaping algorithm, IEEE/ACM Trans. Com-
put. Biol. Bioinform. 15 (2016) 1765–1773.
[27] R.P.S. Manikandan, A.M. Kalpana, Feature selection using fish swarm optimization in big data. Clust. Com-
put. (2017) 1–13, https://doi.org/10.1007/s10586-017-1182-z.
[28] S. Elsherbiny, E. Eldaydamony, M. Alrahmawy, A.E. Reyad, An extended intelligent water drops algorithm
for workflow scheduling in cloud computing environment, Egypt Inform. J. 19 (1) (2018) 33–55.
[29] E.A. Neeba, S. Koteeswaran, Bacterial foraging information swarm optimizer for detecting affective and in-
formative content in medical blogs, Clust. Comput. (2017) 1–14, https://doi.org/10.1007/s10586-017-1169-9.
[30] K. Ahmad, G. Kumar, A. Wahid, M.M. Kirmani, Intrusion detection and prevention on flow of Big Data
using bacterial foraging, in: Handbook of Research on Securing Cloud-Based Databases With Biometric Ap-
plications, IGI Global, 2014, p. 386.
[31] B. Schmidt, A. Al-Fuqaha, A. Gupta, D. Kountanis, Optimizing an artificial immune system algorithm in
support of flow-based internet traffic classification, Appl. Soft Comput. 54 (2017) 1–22.
[32] G. George, L. Parthiban, Multi objective hybridized firefly algorithm with group search optimization for data
clustering, in: Research in Computational Intelligence and Communication Networks (ICRCICN), 2015
IEEE International Conference, IEEE, 2015, pp. 125–130.
[33] A.R. Pouya, M. Solimanpur, M.J. Rezaee, Solving multi-objective portfolio optimization problem using in-
vasive weed optimization, Swarm Evol. Comput. 28 (2016) 42–57.
[34] X. Pu, S. Chen, X. Yu, L. Zhang, Developing a novel hybrid biogeography-based optimization algorithm for
multilayer perceptron training under big data challenge, Sci. Program. 2018 (2018) 1–7.
[35] S. Fong, R. Wong, A.V. Vasilakos, Accelerated PSO swarm search feature selection for data stream mining
big data, IEEE Trans. Serv. Comput. 9 (1) (2016) 33–45.
FURTHER READING
S.S. Gill, I. Chana, R. Buyya, IoT based agriculture as a cloud and big data service: the beginning of digital India,
JOEUC 29 (4) (2017) 1–23.