Page 49 - Big Data Analytics for Intelligent Healthcare Management
P. 49

40      CHAPTER 2 BIG DATA ANALYTICS CHALLENGES AND SOLUTIONS




             [21] R. Lomotey, R. Deters, Unstructured data mining: use case for CouchDB, Int. J. Big Data Intell. 2 (3) (2015)
                 168, https://doi.org/10.1504/ijbdi.2015.070597.
             [22] X. Vu, M. Abel, P. Morizet-Mahoudeaux, A user-centered approach for integrating social data into groups of
                 interest, Data Knowl. Eng. 96–97 (2015) 43–56, https://doi.org/10.1016/j.datak.2015.04.004.
             [23] K. Yue, W. Liu, Y. Zhu, W. Zhang, A probabilistic-graphical-model based approach for representing lineages
                 in uncertain data, Chin. J. Comput. 34 (10) (2011) 1897–1906, https://doi.org/10.3724/sp.j.1016.2011.01897.
             [24] J. Haspel, A big data platform to enable the integration of high-quality clinical data and next generation se-
                 quencing data, Eur. J. Mol. Clin. Med. 2 (2) (2015) 57, https://doi.org/10.1016/j.nhtm.2014.11.011.
             [25] A. Telang, P. Deepak, S. Joshi, P. Deshpande, R. Rajendran, Detecting localized homogeneous anomalies
                 over spatiotemporal data, Data Min. Knowl. Disc. 28 (5–6) (2014) 1480–1502, https://doi.org/10.1007/
                 s10618-014-0366-x.
             [26] J. Zhao, P. Papapetrou, L. Asker, H. Bostr€ om, Learning from unrelated temporal data in electronic health
                 records, J. Biomed. Inform. 65 (2017) 105–119, https://doi.org/10.1016/j.jbi.2016.11.006.
             [27] H. Xie, X. Chen, Cloud storage-oriented unstructured data storage, J. Comput. Appl. 32 (6) (2013)
                 1924–1928, https://doi.org/10.3724/sp.j.1087.2012.01924.
             [28] K. Jabeen, Scalability study of hadoop MapReduce and hive in big data analytics, Int. J. Eng. Comput. Sci.
                 (2016), https://doi.org/10.18535/ijecs/v5i11.11.
             [29] T. Chou, P. Chou, E. Lin, Improving the timeliness of turning signals for business cycles with monthly data,
                 J. Forecast. 35 (8) (2016) 669–689, https://doi.org/10.1002/for.2379.
             [30] C. Bhatt, N. Dey, A.S. Ashour (Eds.), Internet of Things and Big Data Technologies for Next-Generation
                 Healthcare, Springer International Publishing, 2017.
             [31] E. Dumbill, Big data is rocket fuel, Big Data 1 (2) (2013) 71–72, https://doi.org/10.1089/big.2013.0017.
             [32] K. Jutz, The accuracy of data-based sensitivity indices, SIAM Undergrad. Res. Online 9 (2016), https://doi.
                 org/10.1137/15s014757.
             [33] C. Changchit, K. Bagchi, Privacy and security concerns with healthcare data and social media usage,
                 J. Inform. Priv. Secur. 13 (2) (2017) 49–50, https://doi.org/10.1080/15536548.2017.1322413.
             [34] M.S. Kamal, S. Parvin, A.S. Ashour, F. Shi, N. Dey, De-Bruijn graph with the MapReduce framework
                 towards metagenomic data classification, Int. J. Inf. Technol. 9 (1) (2017) 59–75.
             [35] J. Hester, A robust, format-agnostic scientific data transfer framework, Data Sci. J. 15 (2016) 12, https://doi.
                 org/10.5334/dsj-2016-012.
             [36] J. Christensen, Effective data visualization: the right chart for the right data, and data visualization: a hand-
                 book for data driven design, Technol. Archit. Des. 1 (2) (2017) 242–243, https://doi.org/10.1080/
                 24751448.2017.1354629.
             [37] F. Bajaber, R. Elshawi, O. Batarfi, A. Altalhi, A. Barnawi, S. Sakr, Big data 2.0 processing systems:
                 taxonomy and open challenges, J. Grid Comput. 14 (3) (2016) 379–405, https://doi.org/10.1007/s10723-
                 016-9371-1.
             [38] G. Vogel, Danish sperm counts spark data dispute, Science 332 (6036) (2011) 1369–1370, https://doi.org/
                 10.1126/science.332.6036.1369.
             [39] S. Surender Punia, Improving resource management and solving scheduling problem in data ware house
                 using OLAP and OLTP, Int. J. Mech. Eng. Inform. Technol. (2016), https://doi.org/10.18535/ijmeit/v4i9.01.
             [40] R. Kashyap, V. Tiwari, Active contours using global models for medical image segmentation, Int. J. Comput.
                 Syst. Eng. 4 (2/3) (2018) 195, https://doi.org/10.1504/ijcsyse.2018.091404.
             [41] H. Das, B. Naik, H.S. Behera, Classification of diabetes mellitus disease (DMD): a data mining (DM) ap-
                 proach, in: Progress in Computing, Analytics and Networking, Springer, Singapore, 2018, pp. 539–549.
             [42] R. Kashyap, P. Gautam, V. Tiwari, Management and monitoring patterns and future scope, in: Handbook of
                 Research on Pattern Engineering System Development for Big Data Analytics, IGI Global, 2018,
                 pp. 230–251.
             [43] R. Kashyap, P. Gautam, Fast medical image segmentation using energy-based method, in: Pattern and Data
                 Analysis in Healthcare Settings, Medical Information Science Reference, IGI Global, USA, 2017, pp. 35–60.
   44   45   46   47   48   49   50   51   52   53   54