Page 50 - Big Data Analytics for Intelligent Healthcare Management
P. 50

FURTHER READING         41




               [44] R. Kashyap, V. Tiwari, Energy-based active contour method for image segmentation, Int. J. Electron.
                   Healthc. 9 (2–3) (2017) 210–225.
               [45] A. Upadhyay, R. Kashyap, Robust hybrid energy-based method for accurate object boundary detection,
                   J. Adv. Res. Dyn. Control Syst. 1 (06) (2017) 1476–1490.
               [46] J. Tiago, T. Guerra, A. Sequeira, A velocity tracking approach for the data assimilation problem in blood flow
                   simulations, Int. J. Numer. Method Biomed. Eng. 33 (10) (2017) e2856. https://doi.org/10.1002/cnm.2856.
               [47] J. Bacardit, P. Widera, N. Lazzarini, N. Krasnogor, Hard data analytics problems make for better data analysis
                   algorithms: bioinformatics as an example, Big Data 2 (3) (2014) 164–176, https://doi.org/10.1089/
                   big.2014.0023.
               [48] O. von Maurich, A. Golkar, Data authentication, integrity and confidentiality mechanisms for federated sat-
                   ellite systems, Acta Astronaut. 149 (2018) 61–76, https://doi.org/10.1016/j.actaastro.2018.05.003.
               [49] H. Das, A.K. Jena, J. Nayak, B. Naik, H.S. Behera, A novel PSO based back propagation learning-MLP
                   (PSO-BP-MLP) for classification, in: Computational Intelligence in Data Mining-Volume 2, Springer,
                   New Delhi, 2015, pp. 461–471.
               [50] C. Pradhan, H. Das, B. Naik, N. Dey, Handbook of Research on Information Security in Biomedical Signal
                   Processing, IGI Global, Hershey, PA, 2018, pp. 1–414, https://doi.org/10.4018/978-1-5225-5152-2.
               [51] R. Sahani, C. Rout, J.C. Badajena, A.K. Jena, H. Das, Classification of intrusion detection using data mining
                   techniques, in: Progress in Computing, Analytics and Networking, Springer, Singapore, 2018, pp. 753–764.
               [52] G. Ruan, H. Zhang, Closed-loop big data analysis with visualization and scalable computing, Big Data Res.
                   8 (2017) 12–26, https://doi.org/10.1016/j.bdr.2017.01.002.
               [53] E. Zeide, The structural consequences of big data-driven education, Big Data 5 (2) (2017) 164–172, https://
                   doi.org/10.1089/big.2016.0061.
               [54] K. Gai, M. Qiu, H. Zhao, Privacy-preserving data encryption strategy for big data in mobile cloud computing,
                   IEEE Trans. Big Data (2017) 1, https://doi.org/10.1109/tbdata.2017.2705807.
               [55] J. Li, G. Tao, K. Zhang, B. Wang, H. Wang, An effective data processing flow for the acoustic reflection
                   image logging, Geophys. Prospect. 62 (3) (2014) 530–539, https://doi.org/10.1111/1365-2478.12103.
               [56] K.H.K. Reddy, H. Das, D.S. Roy, A data aware scheme for scheduling big-data applications with SAVANNA
                   Hadoop, in: Futures of Network, CRC Press, 2017.
               [57] G. Boulton, The challenges of a big data earth, Big Earth Data 2 (1) (2018) 1–7, https://doi.org/10.1080/
                   20964471.2017.1397411.
               [58] Salesforce.com. (2019). [online] Available at: https://www.salesforce.com/in/paas/overview/ [Accessed 25
                   Jan. 2019].




               FURTHER READING
               N. Dey, C. Bhatt, A.S. Ashour, Big Data for Remote Sensing: Visualization, Analysis, and Interpretation, Springer,
               2018.
               R. Kashyap, P. Gautam, Fast level set method for segmentation of medical images, in: Proceedings of the
               International Conference on Informatics and Analytics (ICIA-16), ACM, New York, NY, 2016. Article 20,
               seven pages.
               Y. Wu, A mining model of network log data based on Hadoop, Int. J. Perform. Eng. (2018), https://doi.org/
               10.23940/ijpe.18.05.p27.10781087.
   45   46   47   48   49   50   51   52   53   54   55