Page 110 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 110
108 CHAPTER 4 Immunotherapy
References
[1] J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, F. Bray, Cancer
incidence and mortality worldwide: sources, methods and major patterns in GLOBO-
CAN 2012, Int. J. Can. 136 (5) (2015) E359–E386.
[2] S. Sengupta, V.K. Balla. A review on the use of magnetic fields and ultrasound for non-
invasive cancer treatment. J. Adv. Res. 14, (2018), 97–111
[3] C. Maccalli, K.I. Rasul, M. Elawad, & S. Ferrone. The role of cancer stem cells in the
modulation of anti-tumor immune responses”. In Seminars in cancer biology. Academic
Press, 53, (2018), 189–200.
[4] D.M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat. Rev.
Can. 12 (4) (2012) 252–64.
[5] W. Manni, Y. Liu, Y. Cheng, W. Xiawei, & W. Yuquan. Immune checkpoint blockade and
its combination therapy with small-molecule inhibitors for cancer treatment. Biochimica
et Biophysica Acta (BBA)-Reviews on Cancer, 1871 (2), (2018), 199–224.
[6] Y. Wang, G. Marelli, A. Howells, N. Lemoine, Oncolytic viral therapy and the immune
system: a double-edged sword against cancer, Front. Immunol. 9 (2018) 866–895.
[7] C. Yee, Adoptive T cell therapy: points to consider, Curr. Opin. Immunol. 51 (2018) 197–
203.
[8] S.A. Rosenberg, N.P. Restifo, Adoptive cell transfers as personalized immunotherapy for
human cancer, Science 348 (6230) (2015) 62–68.
[9] J. Scheller, E. Engelowski, J.M. Moll, & D.M. Floss. Immunoreceptor engineering and
synthetic cytokine signaling for therapeutics. Trends Immunol., 40(3), (2019), 258–272.
[10] W.J. Rettig, L.J Old, Immunogenetics of human cell surface differentiation, Annu Rev
Immunol. 7 (1) (1989) 481–511.
[11] G. Köhler, C.J.n. Milstein, Continuous cultures of fused cells secreting antibody of pre-
defined specificity, Nature 256 (5517) (1975) 495.
[12] D.G. Maloney, A.J. Grillo-López, C.A. White, D. Bodkin, R.J. Schilder, J.A. Neidhart,
B.K.J.B. Dallaire, IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in pa-
tients with relapsed low-grade non-Hodgkin’s lymphoma, Blood 90 (6) (1997) 2188–2195.
[13] N.W. van de Donk, P. Moreau, T. Plesner, A. Palumbo, F. Gay, J.P. Laubach, P.J.B.
Sonneveld, Clinical efficacy and management of monoclonal antibodies targeting CD38
and SLAMF7 in multiple myeloma, Blood 127 (6) (2016) 681–695.
[14] P.J.N.R.C. Carter, Improving the efficacy of antibody-based cancer therapies, Nat. Rev.
Cancer. 1 (2) (2001) 118.
[15] A.M. Scott, J.D. Wolchok, L.J. Old, Antibody therapy of cancer, Nat. Rev. Cancer. 12 (4)
(2012) 278.
[16] J. Patel, J. Amrutiya, P. Bhatt, A. Javia, M. Jain, A.J.J.o.m. Misra, Targeted delivery of
monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR over-
expressed lung tumour cells 35 (2) (2018) 204–217.
[17] C. Offenhäuser, F. Al-Ejeh, S. Puttick, K. Ensbey, Z. Bruce, P. Jamieson, A.J.C. Fuchs, EphA3
pay-loaded antibody therapeutics for the treatment of glioblastoma 10 (12) (2018) 519.
[18] R. Bazak, M. Houri, S. El Achy, S. Kamel, T.J. Refaat, C. Oncology, Cancer active target-
ing by nanoparticles: a comprehensive review of literature 141 (5) (2015) 769–784.
[19] A.L. Nelson. Antibody fragments: hope and hype. Paper presented at the MAbs, (2010).
[20] E. Grieger, G. Gresch, J. Niesen, M. Woitok, S. Barth, R. Fischer, C. Stein, Efficient
targeting of CD13 on cancer cells by the immunotoxin scFv13–ETA′ and the bispecific
scFv [13xds16]. 143 (11) (2017) 2159–2170.