Page 115 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 115
References 113
[90] M.A. Kutzler, D.B. Weiner, DNA vaccines: ready for prime time? Nat. Rev. Genet. 9 (10)
(2008) 776.
[91] D.M. Klinman, G. Yamshchikov, Y. Ishigatsubo, Contribution of CpG motifs to the im-
munogenicity of DNA vaccines, J. Immunol. 158 (8) (1997) 3635–3639.
[92] C.D. Zahm, V.T. Colluru, D.G. McNeel, DNA vaccines for prostate cancer, Pharmacol.
Therapeut. 174 (2017) 27–42.
[93] A. Aitken, D. Roy, M.-C. Bourgeois-Daigneault, Taking a stab at cancer; oncolytic vi-
rus-mediated anti-cancer vaccination strategies, Biomedicines 5 (1) (2017) 3.
[94] J.D. Denham, et al. Two cases of disseminated infection following live organism anti-
cancer vaccine administration in cancer patients, Int. J. Infect. Dis. 72 (2018) 1–2.
[95] P.P. Peruzzi, E.A. Chiocca, Cancer immunotherapy: A vaccine from plant virus proteins,
Nat. Nanotechnol. 11 (3) (2016) 214.
[96] A.S. Aitken, et al. Brief communication; a heterologous oncolytic bacteria-virus prime-
boost approach for anticancer vaccination in mice, J. Immunother. (HagerstownMd. :
1997) 41 (3) (2018) 125.
[97] J. Weiden, J. Tel, C.G. Figdor, Synthetic immune niches for cancer immunotherapy, Nat.
Rev. Immunol. 18 (3) (2018) 212.
[98] P.G. Maslak, T. Dao, Y. Bernal, S.M. Chanel, R. Zhang, M. Frattini, R. Rampal, Phase 2
trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia,
Blood Adv. 2 (3) (2018) 224–234.
[99] R. Sundar, S.Y. Rha, H. Yamaue, M. Katsuda, K. Kono, H.S. Kim, W.P. Yong, A phase
I/Ib study of OTSGC-A24 combined peptide vaccine in advanced gastric cancer, BMC
Can. 18 (1) (2018) 332.
[100] A.L.S. Satelli, Vimentin in cancer and its potential as a molecular target for cancer
therapy, Cell. Mol. Life Sci. 68 (18) (2011) 3033–3046.
[101] A.M. Monjazeb, H.H. Hsiao, G.D. Sckisel, W.J. Murphy, The role of antigen-specific
and non-specific immunotherapy in the treatment of cancer, J. Immunotoxicol. 9 (3)
(2012) 248–258.
[102] S. Farkona, E.P. Diamandis, I.M. Blasutig, Cancer immunotherapy: the beginning of the
end of cancer? BMC Med. 14 (1) (2016) 73.
[103] J.B. Swann, Y. Hayakawa, N. Zerafa, K.C. Sheehan, B. Scott, R.D. Schreiber, M.J.
Smyth, Type I IFN contributes to NK cell homeostasis, activation, and antitumor func-
tion, J. Immunol. 178 (12) (2007) 7540–7549.
[104] O. Boyman, N. Arenas-Ramirez, Development of a novel class of interleukin-2 immu-
notherapies for metastatic cancer, Swiss Med. Week. 149 (0304.) (2019).
[105] S. Tugues, S.H. Burkhard, I. Ohs, M. Vrohlings, K. Nussbaum, J. Vom Berg, P. Kulig,
B. Becher, New insights into IL-12-mediated tumor suppression, Cell Death Different.
22 (2) (2015) 237.
[106] T. Jiang, C. Zhou, S. Ren, Role of IL-2 in cancer immunotherapy, Oncoimmunology 5
(6) (2016) e1163462.
[107] S.A. Rosenberg, IL-2: the first effective immunotherapy for human cancer, J. Immunol.
192 (12) (2014) 5451–5458.
[108] B.S. Parker, J. Rautela, P.J. Hertzog, Antitumour actions of interferons: implications for
cancer therapy, Nat. Rev. Can. 16 (3) (2016) 131.
[109] L.C. Platanias, Interferons and their antitumor properties, J. Interferon Cytokine Res. 33
(4) (2013) 143–144.