Page 43 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 43
References 19
12. Bugg, T.D.H., Ahmad, M., Hardiman, 21. Hofricter, M. (2002) Review: lignin
E.M., and Rahmanpour, R. (2011) conversion by manganese peroxidase
Pathways for degradation of lignin in (MnP). Enzyme Microb. Technol., 30,
bacteria and fungi. Nat. Prod. Rep., 28, 454–466.
1883–1896. 22. Ruiz-Due˜ nas, F.J., Morales, M., Garc ´ ıa,
13. Sigoillot, J.-C., Berrin, J.-G., Bey, E., Miki, Y., Martinez, M.J., and
M., Lesage-Meessen, L., Levasseur, Martinez, A.T. (2009) Substrate oxi-
A., Lomascolo, A., Record, E., and dation sites in versatile peroxidase and
Uzan-Boukhris, E. (2012) in Lignins: other basidiomycete peroxidases. J. Exp.
Biosynthesis, Biodegradation and Bio- Bot., 60, 441–452.
engineering,vol. 61 (eds L. Jouanin and 23. Kersten, P. and Cullen, D. (2007)
C. Lapierre), Elsevier, Amsterdam, pp. Extracellular oxidative system of the
263–308. lignin-degrading Basidiomycete Phane-
14. Martinez, A.T. (2007) in Industrial rochaete chrysosporium. Fungal Genet.
Enzymes: Structure, Functions and Biol., 44, 77–87.
Applications (eds J. Polaina and A.P. 24. Ca˜ nas, A.I. and Camarero, S. (2010)
MacCabe), Springer, New York, pp. Laccases and their natural mediators:
475–486. biotechnological tools for sustainable
15. Martinez, A.T., Ruiz-Due˜ nas, F.J., eco-friendly processes. Biotechnol. Adv.,
Mart ´ ınez, M.J., del Rio, J.C., and 28, 694–705.
Gutierrez, A. (2009) Enzymatic delig- 25. Kunamneni, A., Plou, F.J., Ballesteros,
nification of plant cell wall: from nature A., and Alcalde, M. (2008) Laccase
to mill. Curr. Opin. Biotechnol., 20, and their applications: a patent review.
348–357. Recent Patents Biotechnol., 2, 10–24.
16. Floudas, D., Bider, M., Riley, R., Barry, 26. Hofrichter, M., Ullrich, R., Pecyna, M.J.,
K., Blanchette, R.A., Henrissat, B., Liers, C., and Lundell, T. (2010) New
Mart ´ ınez, A.T., Otillar, R., Spatafora, and classic families of secreted fun-
J.W. et al. (2012) The Paleozoic ori- gal heme peroxidases. Appl. Microbiol.
gin of enzymatic lignin decomposition Biotechnol., 87, 871–897.
reconstructed from 31 fungal genomes. 27. Gianfreda, L., Xu, F., and Bollag, J.
Science, 336, 1715–1719. (1999) Laccases: a useful group of oxi-
17. Gasser, C.A., Hommes, G., Sch¨ affer, doreductive enzymes. Bioremed. J., 3 (1),
A., and Corvini, P.F.-X. (2012) Multi- 1–26.
catalysis reactions: new prospects and 28. Baldrian, P. (2006) Fungal lac-
challenges of biotechnology to valorize cases – occurrence and properties.
lignin. Appl. Microbiol. Biotechnol., 95, FEMS Microbiol. Rev., 30, 215–242.
1115–1134. 29. Rodgers, C.J., Blanford, C.F., Giddens,
18. Bidlack, J., Malone, M., and Benson, R. S.R., Skamnioti, P., Armstrong, F.A.,
(1992) Molecular structure and compo- and Gurr, S.J. (2010) Designer lac-
nent integration of secondary cell walls cases: a vogue for high-potential fungal
in plants. Proc. Okla. Acad. Sci., 72, enzymes? Trends Biotechnol., 28, 63–72.
51–56. 30. Kunamneni, A., Camarero, S., Garc ´ ıa,
19. Martinez, A.T., Speranza, M., C., Plou, F.J., Ballesteros, A., and
Ruiz-Due˜ nas, F.J., Ferreira, P., Alcalde, M. (2008) Engineering and
Camarero, S., Guillen, F., Martinez, applications of fungal laccases for
M.J., Gutierrez, A., and del Rio, J.C. organic synthesis. Microb. Cell Fact.,
(2005) Biodegradation of lignocellulosics: 7 (32), 1–17.
microbial, chemical, and enzymatic 31. Riva, S. (2006) Laccases: blue enzymes
aspects of the fungal attack of lignin. for green chemistry. Trends Biotechnol.,
Int. Microbiol., 8, 195–204. 24, 219–226.
20. Hammel, K.E. and Cullen, D. (2008) 32. Alcalde, M. (2007) in Industrial Enzymes:
Role of fungal peroxidases in biological Structure, Functions and Applications (eds
ligninolysis. Curr. Opin. Plant Biol., 11, J. Polaina and A.P. MacCabe), Springer,
349–355. New York, pp. 459–474.