Page 45 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 45
References 21
cinnabarinus. Appl. Environ. Microbiol., predicted with a modified FoldX proto-
78, 1370–1384. col. J. Chem.Inf.Model., 52, 3028–3042.
53. Molina-Espeja, P., Garcia-Ruiz, E., 63. Welinder, K.G. (1992) Superfamily of
Gonzalez-Perez, D., Ullrich, R., plant, fungal and bacterial peroxidases.
Hofrichter, M., and Alcalde, M. (2014) Curr. Opin. Struct. Biol., 2, 388–393.
Directed evolution of unspecific perox- 64. Ruiz-Due˜ nas, F.J. and Martinez, A.T.
ygenase from Agrocybe aegerita. Appl. (2009) Microbial degradation of lignin:
Environ. Microbiol, In press. how a bulky recalcitrant polymer is
54. Pardo, I., Vicente, A.I., Alcalde, M., and efficiently recycled in nature and how
Camarero, S. (2012) Development of we can take advantage of this. Microb.
chimeric laccases by directed evolution. Biotechnol., 2, 164–177.
Biotechnol. Bioeng., 109, 2978–2986. 65. Cherry, J.R., Lamsa, M.H., Schneider,
55. Cusano, A.M., Mekmouche, Y., Meglecz, P., Vind, J., Svendsen, A., Jones, A., and
E., and Tron, T. (2009) Plasticity of Pedersen, A.H. (1999) Directed evolution
laccase generated by homeologous of a fungal peroxidase. Nat. Biotechnol.,
recombination in yeast. FEBS J., 276,
17, 379–384.
5471–5480.
66. Houborg, K., Harris, P., Poulsen, J.C.N.,
56. Theerachat, M., Emond, S., Cambon,
Schneider, P., Svendsen, A., and Larsen,
E.,Bordes, F.,Marty,A., Nicaud, S. (2003) The structure of a mutant
J.-M., Chulalaksananukul, W., Guieysse, enzyme of Coprinus cinereus peroxi-
D., Remaud-Simeon, M., and Morel, dase provides an understanding of its
S. (2012) Engineering and production increased thermostability. Acta Crys-
of laccase from Trametes versicolor in
tallogr., Sect. D: Biol. Crystallogr., 59,
the yeast Yarrowia lipolytica. Bioresour.
997–1003.
Technol., 125, 267–274.
67. Morawski, B., Quan, S., and Arnold,
57. Liu, H., Zhu, L., Bocola, M., Chen, F.H. (2001) Functional expression and
M., Spiess, A.C., and Schwaneberg, U. stabilization of horseradish peroxidase
(2013) Directed laccase evolution for by directed evolution in Saccharomyces
improved ionic liquid resistance. Green cerevisiae. Biotechnol. Bioeng., 76, 99–107.
Chem., 15, 1348–1355.
68. Patel, S.C. and Hecht, M.H. (2012)
58. Festa, G., Autore, F., Fraternali, F.,
Directed evolution of the peroxidase
Giardina, P., and Sannia, G. (2008)
activity of a novo-designed protein.
Development of new laccases by directed
Protein Eng. Des. Sel., 25 (9), 445–451.
evolution: functional and computational
69. Miyazaki-Imamura, C., Oohira, K.,
analyses. Proteins, 72, 25–34.
Kitagawa, R., Nakano, H., Yamane, T.,
59. Miele, A., Faraco, V., Piscitelli, A.,
and Takahashi, H. (2003) Improvement
Del Vecchio, C., Giardina, P., and
of H O stability of manganese per-
Sannia, G. (2009) Selection of ’better 2 2
performing’ laccases through directed oxidase by combinatorial mutagenesis
evolution. FEBS J., 276, 377–378. and high-throughput screening using in
60. Miele, A., Giardina, P., Sannia, G., and vitro expression with protein disulfide
Faraco, V. (2010) Random mutants isomerase. Protein Eng., 16, 423–428.
of a Pleurotus ostreatus laccase as new 70. Ryu, K., Hwang, S.Y., Kim, K.H., Kang,
biocatalysts for industrial effluents J.H., and Lee, E.K. (2008) Functionality
bioremediation. J. Appl. Microbiol., 108, improvement of fungal lignin peroxidase
998–1006. by DNA shuffling for 2,4-dichlorophenol
61. Hu, M.R., Chao, Y.P., Zhang, G.Q., degradability and H O stability. J.
2
2
Yang, X.Q., Xue, Z.Q., and Qian, S.J. Biotechnol., 133, 110–115.
(2007) Molecular evolution of Fome 71. Ryu, K., Kang, J.H., Wang, L.S., and
lignosus laccase by ethyl methane Lee, E.K. (2008) Expression in yeast
sulfonate-based random mutagenesis of secreted lignin peroxidase with
in vitro. Biomol. Eng., 24, 619–624. improved 2,4-dichlorophenol degrad-
62. Christensen, N.J. and Kepp, K.P. (2012) ability by DNA shuffling. J. Biotechnol.,
Accurate stabilities of laccase mutants 135, 241–246.