Page 233 - Biodegradable Polyesters
P. 233

References  211

               35. Bhatia, A., Gupta, R.K., Bhattacharya,  and characterization of dextran mem-
                  S.N., and Choi, H. (2007) Compatibility  branes prepared by electrospinning.
                  of biodegradable poly(lactic acid)(PLA)  Biomacromolecules, 5, 326–333.
                  and poly(butylene succinate)(PBS) blends 45. Picciani, P.H.S., Medeiros, E.S., Pan, Z.,
                  for packaging application. Korea-Aust.  Orts, W.J., Mattoso, L.H.C., and Soares,
                  Rheol. J., 19, 125–131.         B.G. (2009) Development of conducting
               36. Touny, A., Lawrence, J., Jones, A., and  polyaniline/poly(lactic acid) nanofibers
                  Bhaduri, S. (2010) Effect of electrospin-  by electrospinning. J. Appl. Polym. Sci.,
                  ning parameters on the characterization  112, 744–753.
                  of PLA/HNT nanocomposite fibers. J.  46. Ji,Y., Ghosh, K.,Shu,X., Li,B.,
                  Mater. Res., 25, 857–865.       Sokolov, J., Prestwich, G., Clark, R.,
               37. Xu, X., Zhong, W., Zhou, S., Trajtman,  and Rafailovich, M. (2006) Electro-
                  A., and Alfa, M. (2010) Electrospun  spun three-dimensional hyaluronic acid
                  PEG–PLA nanofibrous membrane     nanofibrous scaffolds. Biomaterials, 27,
                  for sustained release of hydrophilic  3782–3792.
                  antibiotics. J. Appl. Polym. Sci., 118,  47. Zhang, Y., Ouyang, H., Lim, C.,
                  588–595.                        Ramakrishna, S., and Huang, Z. (2005)
                                                  Electrospinning of gelatine fibers and
               38. Lee, K., Kim, H., Khil, M., Ra, Y., and
                                                  gelatine/PCL composite fibrous scaffolds.
                  Lee, D. (2003) Characterization of nano-
                                                  J. Biomed.Mater.Res.PartB:Appl.
                  structured poly caprolactone nonwoven
                                                  Biomater., 72, 156–165.
                  mats via electrospinning. Polymer, 44,
                                               48. Arumugam, G., Khan, S., and Heiden, P.
                  1287–1294.
               39. Kenawy, E., Abdel-Hay, F., El-Newehy,  (2009) Comparison of the effects of an
                                                  ionic liquid and other salts on the prop-
                  M., and Wnek, G. (2009) Processing of
                                                  erties of electrospun fibers, 2-poly(vinyl
                  polymer nanofibers through electrospin-  alcohol). Macromol. Mater. Eng., 294,
                  ning as drug delivery systems. Mater.
                                                  45–53.
                  Chem. Phys., 113, 296–302.
                                               49. Liu, F.,Guo,R., Shen,M., Wang,S.,
               40. Huang, Z., He, C., Yang, A., Zhang,  and Shi, X. (2009) Effect of processing
                  Y., Han, X., Yin, J., and Wu, Q. (2006)
                                                  variables on the morphology of electro-
                  Encapsulating drugs in biodegradable  spun poly[(lactic acid) co (glycolic acid)]
                  ultrafine fibers through co axial electro-
                                                  nanofibers. Macromol. Mater. Eng., 294,
                  spinning. J. Biomed. Mater. Res. Part A,
                                                  666–672.
                  77, 169–179.
                                               50. Ribeiro, C.,Sencadas, V.,Ribelles,
               41. Hamoudeh, M. and Fessi, H. (2006)
                                                  J.L.G., and Lanceros-Méndez, S. (2010)
                  Preparation, characterization and surface
                                                  Influence of processing conditions on
                  study of poly-epsilon caprolactone mag-  polymorphism and nanofiber morphol-
                  netic microparticles. J. Colloid Interface  ogy of electroactive poly(vinylidene
                  Sci., 300, 584–590.             fluoride) electrospun membranes. Soft
               42. Fu, Y. and Kao, W. (2010) Drug release  Mater., 8, 274–287.
                  kinetics and transport mechanisms of  51. Biber, E.,Gündüz, G.,Mavis,B.,
                  non-degradable and degradable poly-  and Colak, U. (2010) Effects of elec-
                  meric delivery systems. Expert Opin.  trospinning process parameters on
                  Drug Delivery, 7, 429–444.      nanofibers obtained from Nylon 6 and
               43. Li, Y., Jiang, H., and Zhu, K. (2008)  poly(ethylene-n-butyl acrylate-maleic
                  Encapsulation and controlled release  anhydride) elastomer blends using John-
                  of lysozyme from electrospun poly(ε-  son S B statistical distribution function.
                  caprolactone)/poly(ethylene glycol)  Appl. Phys. A: Mater. Sci. Process., 99,
                  non-woven membranes by formation of  477–487.
                  lysozyme–oleate complexes. J. Mater.  52. Cui, W.,Li, X.,Zhu,X., Yu,G., Zhou,
                  Sci. - Mater. Med., 19, 827–832.  S., and Weng, J. (2006) Investigation
               44. Jiang, H., Fang, D., Hsiao, B., Chu, B.,  of drug release and matrix degrada-
                  and Chen, W. (2004) Optimization  tion of electrospun poly(DL-lactide)
   228   229   230   231   232   233   234   235   236   237   238