Page 233 - Biodegradable Polyesters
P. 233
References 211
35. Bhatia, A., Gupta, R.K., Bhattacharya, and characterization of dextran mem-
S.N., and Choi, H. (2007) Compatibility branes prepared by electrospinning.
of biodegradable poly(lactic acid)(PLA) Biomacromolecules, 5, 326–333.
and poly(butylene succinate)(PBS) blends 45. Picciani, P.H.S., Medeiros, E.S., Pan, Z.,
for packaging application. Korea-Aust. Orts, W.J., Mattoso, L.H.C., and Soares,
Rheol. J., 19, 125–131. B.G. (2009) Development of conducting
36. Touny, A., Lawrence, J., Jones, A., and polyaniline/poly(lactic acid) nanofibers
Bhaduri, S. (2010) Effect of electrospin- by electrospinning. J. Appl. Polym. Sci.,
ning parameters on the characterization 112, 744–753.
of PLA/HNT nanocomposite fibers. J. 46. Ji,Y., Ghosh, K.,Shu,X., Li,B.,
Mater. Res., 25, 857–865. Sokolov, J., Prestwich, G., Clark, R.,
37. Xu, X., Zhong, W., Zhou, S., Trajtman, and Rafailovich, M. (2006) Electro-
A., and Alfa, M. (2010) Electrospun spun three-dimensional hyaluronic acid
PEG–PLA nanofibrous membrane nanofibrous scaffolds. Biomaterials, 27,
for sustained release of hydrophilic 3782–3792.
antibiotics. J. Appl. Polym. Sci., 118, 47. Zhang, Y., Ouyang, H., Lim, C.,
588–595. Ramakrishna, S., and Huang, Z. (2005)
Electrospinning of gelatine fibers and
38. Lee, K., Kim, H., Khil, M., Ra, Y., and
gelatine/PCL composite fibrous scaffolds.
Lee, D. (2003) Characterization of nano-
J. Biomed.Mater.Res.PartB:Appl.
structured poly caprolactone nonwoven
Biomater., 72, 156–165.
mats via electrospinning. Polymer, 44,
48. Arumugam, G., Khan, S., and Heiden, P.
1287–1294.
39. Kenawy, E., Abdel-Hay, F., El-Newehy, (2009) Comparison of the effects of an
ionic liquid and other salts on the prop-
M., and Wnek, G. (2009) Processing of
erties of electrospun fibers, 2-poly(vinyl
polymer nanofibers through electrospin- alcohol). Macromol. Mater. Eng., 294,
ning as drug delivery systems. Mater.
45–53.
Chem. Phys., 113, 296–302.
49. Liu, F.,Guo,R., Shen,M., Wang,S.,
40. Huang, Z., He, C., Yang, A., Zhang, and Shi, X. (2009) Effect of processing
Y., Han, X., Yin, J., and Wu, Q. (2006)
variables on the morphology of electro-
Encapsulating drugs in biodegradable spun poly[(lactic acid) co (glycolic acid)]
ultrafine fibers through co axial electro-
nanofibers. Macromol. Mater. Eng., 294,
spinning. J. Biomed. Mater. Res. Part A,
666–672.
77, 169–179.
50. Ribeiro, C.,Sencadas, V.,Ribelles,
41. Hamoudeh, M. and Fessi, H. (2006)
J.L.G., and Lanceros-Méndez, S. (2010)
Preparation, characterization and surface
Influence of processing conditions on
study of poly-epsilon caprolactone mag- polymorphism and nanofiber morphol-
netic microparticles. J. Colloid Interface ogy of electroactive poly(vinylidene
Sci., 300, 584–590. fluoride) electrospun membranes. Soft
42. Fu, Y. and Kao, W. (2010) Drug release Mater., 8, 274–287.
kinetics and transport mechanisms of 51. Biber, E.,Gündüz, G.,Mavis,B.,
non-degradable and degradable poly- and Colak, U. (2010) Effects of elec-
meric delivery systems. Expert Opin. trospinning process parameters on
Drug Delivery, 7, 429–444. nanofibers obtained from Nylon 6 and
43. Li, Y., Jiang, H., and Zhu, K. (2008) poly(ethylene-n-butyl acrylate-maleic
Encapsulation and controlled release anhydride) elastomer blends using John-
of lysozyme from electrospun poly(ε- son S B statistical distribution function.
caprolactone)/poly(ethylene glycol) Appl. Phys. A: Mater. Sci. Process., 99,
non-woven membranes by formation of 477–487.
lysozyme–oleate complexes. J. Mater. 52. Cui, W.,Li, X.,Zhu,X., Yu,G., Zhou,
Sci. - Mater. Med., 19, 827–832. S., and Weng, J. (2006) Investigation
44. Jiang, H., Fang, D., Hsiao, B., Chu, B., of drug release and matrix degrada-
and Chen, W. (2004) Optimization tion of electrospun poly(DL-lactide)