Page 231 - Biodegradable Polyesters
P. 231
References 209
References
1. Agarwal, S., Wendorff, J., and Greiner, thermal properties. Proceedings of the
A. (2008) Use of electrospinning tech- 8th Asian-Australasian Conference on
nique for biomedical applications. Composite Materials (ACCM8), Kuala
Polymer, 49, 5603–5621. Lumpur, Malaysia, November 6–8, 2012.
2. Singh, S., Lakshmi, S., and Vijayakumar, 10. Chowdhury, M. and Stylios, G. (2011)
M. (2009) Effect of process parameters Process optimization and alignment
on the microstructural characteristics of PVA/FeCl 3 nano composite fibres
of electrospun poly(vinyl alcohol) fiber by electrospinning. J. Mater. Sci., 46,
mats. NanoBioTechnol., 5, 10–16. 3378–3386.
3. Zhang, Y., Su, B., Venugopal, J., 11. Kontogiannopoulos, K.N., Assimopoulou,
Ramakrishna, S., and Lim, C. (2007) A.N., Tsivintzelis, I., Panayiotou, C.,
Biomimetic and bioactive nanofibrous and Papageorgiou, V.P. (2011) Electro-
scaffolds from electrospun composite spun fiber mats containing shikonin
nanofibers. Int. J. Nanomed., 2, 623–638. and derivatives with potential biomed-
4. Sun, X.Z., Williams, G.R., Hou, X.X., and ical applications. Int. J. Pharm., 409,
Zhu, L.M. (2013) Electrospun curcumin- 216–228.
loaded fibers with potential biomedical 12. Rogina, A. (2014) Electrospinning pro-
applications. Carbohydr. Polym., 94, cess: versatile preparation method for
147–153. biodegradable and natural polymers and
5. Balogh, A., Drávavölgyi, G., Faragó, K., biocomposite systems applied in tissue
Farkas, A., Vigh, T., Sóti, P.L., Wagner, engineering and drug delivery. Appl.
I., Madarász, J., Pataki, H., and Marosi, Surf. Sci., 296, 221–230.
G. (2014) Plasticized drug-loaded melt 13. Sonseca, A., Peponi, L., Sahuquillo,
electrospun polymer mats: characteri- O., Kenny, J.M., and Giménez, E.
zation, thermal degradation, and release (2012) Electrospinning of biodegradable
kinetics. J. Pharm. Sci., 103, 1278–1287. polylactide/hydroxyapatite nanofibers:
6. Dong,Y., Bickford,T., Haroosh, H.J., study on the morphology, crystallinity
Lau, K.T., and Takagi, H. (2013) structure and thermal stability. Polym.
Multi-response analysis in the mate- Degrad. Stab., 97, 2052–2059.
rial characterisation of electrospun 14. Liu, H., Wang, S., and Qi, N. (2012)
poly(lactic acid)/halloysite nanotube Controllable structure, properties,
composite fibres based on Taguchi and degradation of the electrospun
design of experiments: fibre diameter, PLGA/PLA-blended nanofibrous
non-intercalation and nucleation effects. scaffolds. J. Appl. Polym. Sci., 125,
Appl. Phys. A: Mater. Sci. Process., 112, E468–E476.
747–757. 15. Ribeiro, C.,Sencadas, V.,Costa,
7. Han, J., Chen, T., Branford-White, C.M., Gómez Ribelles, J.L., and
C., and Zhu, L. (2009) Electrospun Lanceros-Méndez, S. (2011) Tailoring
shikonin-loaded PCL/PTMC composite the morphology and crystallinity of
fiber mats with potential biomedi- poly(L-lactide acid) electrospun mem-
cal applications. Int. J. Pharm., 382, branes. Sci. Technol. Adv. Mater., 12,
215–221. 015001.
8. Hadjiargyrou, M. and Chiu, J. (2008) 16. Canbolat, M.F., Celebioglu, A., and Uyar,
Enhanced composite electrospun T. (2014) Drug delivery system based on
nanofiber scaffolds for use in drug cyclodextrin-naproxen inclusion complex
delivery. Expert Opin. Drug Delivery, 5, incorporated in electrospun poly capro-
1093–1106. lactone nanofibers. Colloids Surf., B, 115,
9. Dong, Y., Bickford, T., and Haroosh, 15–21.
H.J. (2012) Statistical design of experi- 17. Dong, Y., Chaudhary, D., Haroosh, H.J.,
ments for electrospun poly(lactic acid) Sharma, V., and Bickford, T. (2011)
(PLA)/halloysite nanotube (HNT) com- Functionally electrospun PLA/tubular
posites in response to fibre diameter and clay nanocomposites for the potential