Page 92 - Biodegradable Polyesters
P. 92

70  3 Microbial Synthesis of Biodegradable Polyesters: Processes, Products, Applications

                       termination and reinitiation. Biochem-  the chemolithotrophic bacterium Fer-
                       istry, 44, 8369–8377.            robacillus ferrooxidans. J. Bacteriol., 97,
                    42. Griebel, R., Smith, Z., and Merrick,  947–950.
                       J.M. (1968) Metabolism of poly-  51. Lundgren, D.G., Pfister, R.M., and
                       beta-hydroxybutyrate. I. Purification,  Merrick, J.M. (1964) Structure of poly-
                       composition, and properties of native  beta-hydroxybutyric acid granules. J.
                       poly-betahydroxybutyrategranules from  Gen. Microbiol., 1964 (34), 441–446.
                       Bacillus megaterium. Biochemistry, 7,  52. Mayer, F., Madkour, M.H., PieperFurst,
                                                        U., Wieczorek, R., Gesell, M.L., and
                       3676–3681.
                                                        Steinbüchel, A. (1996) Electron micro-
                    43. Hoppensack, A., Rehm, B.H.A., and
                       Steinbüchel, A. (1999) Analysis of  scopic observations on the macromolec-
                                                        ular organization of the boundary layer
                       4-phosphopantetheinylation of poly-
                                                        of bacterial PHA inclusion bodies. J.
                       hydroxybutyrate synthase from Ralstonia  Gen. Appl. Microbiol., 42, 445–455.
                       eutropha: generation of beta-alanine
                                                     53. Tian, J., Sinskey, A.J., and Stubbe, J.
                       auxotrophic Tn5 mutants and cloning of
                                                        (2005) Kinetic studies of polyhydroxy-
                       the panD gene region. J. Bacteriol., 181,  butyrate granule formation in Wautersia
                       1429–1435.
                                                        eutropha H16 by transmission elec-
                    44. Amara, A.A. and Rehm, B.H.A. (2003)
                                                        tron microscopy. J. Bacteriol., 187,
                       Replacement of the catalytic nucle-  3814–3824.
                       ophile cysteine-296 by serine in class  54. Dennis, D.,Liebig, C.,Holley, T.,
                       II polyhydroxyalkanoate synthase from  Thomas, K.S., Khosla, A., Wilson, D.,
                       Pseudomonas aeruginosa-mediated syn-  and Augustine, B. (2003) Preliminary
                       thesis of a new polyester: identification  analysis of polyhydroxyalkanoate inclu-
                       of catalytic residues. Biochem. J., 374,  sions using atomic force microscopy.
                       413–421.                         FEMS Microbiol. Lett., 226, 113–119.
                    45. Jia, Y., Kappock, T.J., Frick, T., Sinskey,  55. Peters, V. and Rehm, B.H.A. (2005) In
                       A.J., and Stubbe, J. (2000) Lipases  vivo monitoring of PHA granule forma-
                       provide a new mechanistic model  tion using GFP-labeled PHA synthases.
                       for polyhydroxybutyrate (PHB) syn-  FEMS Microbiol. Lett., 248, 93–100.
                       thases: characterization of the functional  56. Jendrossek, D. (2005) Fluorescence
                       residues in Chromatium vinosum PHB  microscopical investigation of poly(3-
                       synthase. Biochemistry, 39, 3927–3936.  hydroxybutyrate) granule formation
                    46. Gerngross, T.U. and Martin, D.P. (1995)  in bacteria. Biomacromolecules, 6,
                       Enzyme catalyzed synthesis of poly[(R)-  598–603.
                                                     57. Schultheiss, D., Handrick, R., Jendrossek,
                       (-)-3-hydroxybutyrate]: formation of
                                                        D., Hanzlik, M., and Schuler, D. (2005)
                       macroscopic granules in vitro. Proc.
                       Natl. Acad. Sci. U.S.A., 92, 6279–6283.  The presumptive magnetosome protein
                                                        Mms16 is a poly(3-hydroxybutyrate)
                    47. Boatman, E.S. (1964) Observations on
                                                        granule-bound protein (phasin) in
                       thefine structureofspheroplastsof  Magnetospirillum gryphiswaldense. J.
                       Rhodospirillum rubrum. J. Cell Biol., 20,
                                                        Bacteriol., 187, 2416–2425.
                       297–311.
                                                     58. Gerngross, T.U., Reilly, P., Stubbe, J.,
                    48. Dunlop, W.F. and Robards, A.W.  Sinskey, A.J., and Peoples, O.P. (1993)
                       (1973) Ultrastructural study of poly-
                                                        Immunocytochemical analysis of poly-
                       -hydroxybutyrate granules from Bacil-
                                                        beta-hydroxybutyrate (PHB) synthase
                       luscereus. J. Bacteriol., 114, 1271–1280.  in Alcaligenes eutrophus H16,local-
                    49. Jensen, T.E. and Sicko, L.M. (1971) Fine  ization of the synthase enzyme at the
                       structure of poly-beta-hydroxybutyric  surface of PHB granules. J. Bacteriol.,
                       acid granules in a blue-greenalga,  175, 5289–5293.
                       Chlorogloea fritschii. J. Bacteriol., 106,  59. Mayer, F. and Hoppert, M. (1997)
                       683–686.                         Determination of the thickness of the
                    50. Wang, W.S. and Lundgren, D.G.   boundary layer surrounding bacterial
                       (1996) Poly-betahydroxybutyrate in  PHA inclusion bodies, and implications
   87   88   89   90   91   92   93   94   95   96   97