Page 92 - Biodegradable Polyesters
P. 92
70 3 Microbial Synthesis of Biodegradable Polyesters: Processes, Products, Applications
termination and reinitiation. Biochem- the chemolithotrophic bacterium Fer-
istry, 44, 8369–8377. robacillus ferrooxidans. J. Bacteriol., 97,
42. Griebel, R., Smith, Z., and Merrick, 947–950.
J.M. (1968) Metabolism of poly- 51. Lundgren, D.G., Pfister, R.M., and
beta-hydroxybutyrate. I. Purification, Merrick, J.M. (1964) Structure of poly-
composition, and properties of native beta-hydroxybutyric acid granules. J.
poly-betahydroxybutyrategranules from Gen. Microbiol., 1964 (34), 441–446.
Bacillus megaterium. Biochemistry, 7, 52. Mayer, F., Madkour, M.H., PieperFurst,
U., Wieczorek, R., Gesell, M.L., and
3676–3681.
Steinbüchel, A. (1996) Electron micro-
43. Hoppensack, A., Rehm, B.H.A., and
Steinbüchel, A. (1999) Analysis of scopic observations on the macromolec-
ular organization of the boundary layer
4-phosphopantetheinylation of poly-
of bacterial PHA inclusion bodies. J.
hydroxybutyrate synthase from Ralstonia Gen. Appl. Microbiol., 42, 445–455.
eutropha: generation of beta-alanine
53. Tian, J., Sinskey, A.J., and Stubbe, J.
auxotrophic Tn5 mutants and cloning of
(2005) Kinetic studies of polyhydroxy-
the panD gene region. J. Bacteriol., 181, butyrate granule formation in Wautersia
1429–1435.
eutropha H16 by transmission elec-
44. Amara, A.A. and Rehm, B.H.A. (2003)
tron microscopy. J. Bacteriol., 187,
Replacement of the catalytic nucle- 3814–3824.
ophile cysteine-296 by serine in class 54. Dennis, D.,Liebig, C.,Holley, T.,
II polyhydroxyalkanoate synthase from Thomas, K.S., Khosla, A., Wilson, D.,
Pseudomonas aeruginosa-mediated syn- and Augustine, B. (2003) Preliminary
thesis of a new polyester: identification analysis of polyhydroxyalkanoate inclu-
of catalytic residues. Biochem. J., 374, sions using atomic force microscopy.
413–421. FEMS Microbiol. Lett., 226, 113–119.
45. Jia, Y., Kappock, T.J., Frick, T., Sinskey, 55. Peters, V. and Rehm, B.H.A. (2005) In
A.J., and Stubbe, J. (2000) Lipases vivo monitoring of PHA granule forma-
provide a new mechanistic model tion using GFP-labeled PHA synthases.
for polyhydroxybutyrate (PHB) syn- FEMS Microbiol. Lett., 248, 93–100.
thases: characterization of the functional 56. Jendrossek, D. (2005) Fluorescence
residues in Chromatium vinosum PHB microscopical investigation of poly(3-
synthase. Biochemistry, 39, 3927–3936. hydroxybutyrate) granule formation
46. Gerngross, T.U. and Martin, D.P. (1995) in bacteria. Biomacromolecules, 6,
Enzyme catalyzed synthesis of poly[(R)- 598–603.
57. Schultheiss, D., Handrick, R., Jendrossek,
(-)-3-hydroxybutyrate]: formation of
D., Hanzlik, M., and Schuler, D. (2005)
macroscopic granules in vitro. Proc.
Natl. Acad. Sci. U.S.A., 92, 6279–6283. The presumptive magnetosome protein
Mms16 is a poly(3-hydroxybutyrate)
47. Boatman, E.S. (1964) Observations on
granule-bound protein (phasin) in
thefine structureofspheroplastsof Magnetospirillum gryphiswaldense. J.
Rhodospirillum rubrum. J. Cell Biol., 20,
Bacteriol., 187, 2416–2425.
297–311.
58. Gerngross, T.U., Reilly, P., Stubbe, J.,
48. Dunlop, W.F. and Robards, A.W. Sinskey, A.J., and Peoples, O.P. (1993)
(1973) Ultrastructural study of poly-
Immunocytochemical analysis of poly-
-hydroxybutyrate granules from Bacil-
beta-hydroxybutyrate (PHB) synthase
luscereus. J. Bacteriol., 114, 1271–1280. in Alcaligenes eutrophus H16,local-
49. Jensen, T.E. and Sicko, L.M. (1971) Fine ization of the synthase enzyme at the
structure of poly-beta-hydroxybutyric surface of PHB granules. J. Bacteriol.,
acid granules in a blue-greenalga, 175, 5289–5293.
Chlorogloea fritschii. J. Bacteriol., 106, 59. Mayer, F. and Hoppert, M. (1997)
683–686. Determination of the thickness of the
50. Wang, W.S. and Lundgren, D.G. boundary layer surrounding bacterial
(1996) Poly-betahydroxybutyrate in PHA inclusion bodies, and implications