Page 23 - Biofuels for a More Sustainable Future
P. 23
16 Biofuels for a More Sustainable Future
Chen, Y., Dong, B., Qin, W., Xiao, D., 2010. Xylose and cellulose fractionation from corn-
cob with three different strategies and separate fermentation of them to bioethanol. Bior-
esour. Technol. 101 (18), 6994e9.
Chen, W.H., Chen, Y.C., Lin, J.G., 2013. Evaluation of biobutanol production from non-
pretreated rice straw hydrolysate under non-sterile environmental conditions. Bioresour.
Technol. 135, 262e8.
Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25 (3), 294e306.
Choi, I.S., Wi, S.G., Kim, S.B., Bae, H.J., 2012. Conversion of coffee residue waste into
bioethanol with using popping pretreatment. Bioresour. Technol. 125, 132e7.
Coyle, W.T., 2010. Next-Generation Biofuels Near-Term Challenges and Implications for
Agriculture, FDS-10 k-01. http://www.ers.usda.gov/publications/bio-bioenergy/bio-
01-01.aspx. (Accessed 12 December 2013).
Czekała, W., Bartnikowska, S., Dach, J., Janczak, D., Mazurkiewicz, J., 2018. The energy
value and economic efficiency of solid biofuels produced from digestate and sawdust.
Energy 159, 1118–1122.
Doshi, A., Pascoe, S., Coglan, L., Rainey, T.J., 2016. Economic and policy issues in the pro-
duction of algae-based biofuels: a review. Renew. Sust. Energ. Rev. 64, 329–337.
Dutta, K., Sen, S., Dasu, V.V., 2009. Production, characterization and applications of micro-
bial cutinases. Process Biochem. 44, 127e34.
Dutta, K., Daverey, A., Lin, J.-G., 2014. Evolution retrospective for alternative fuels: first to
fourth generation. Renew. Energy 69, 114–122.
Enciso, S.R.A., Fellmann, T., Dominguez, I.P., Santini, F., 2016. Abolishing biofuel poli-
cies: possible impacts on agricultural price levels, price variability and global food secu-
rity. Food Policy 61, 9–26.
Filip, O., Janda, K., Kristoufek, L., Zilberman, D., 2017. Food versus fuel: an updated and
expanded evidence. Energy Econ. (in press), corrected proof. Available online 6
November 2017.
FitzPatrick, M., Champagne, P., Cunningham, M.F., Whitney, R.A., 2010. A biorefinery
processing perspective: treatment of lignocellulosic materials for the production of value-
added products. Bioresour. Technol. 101, 8915–8922.
Food and Agricultural Policy Research Institute (FAPRI), 2010. FAPRI U.S. Baseline Brief-
ing Book (FAPRI-MU Report No. 01–10), Columbia, MO. .
Gao, X., Gao, Q., Bao, J., 2018. Improving cellulosic ethanol fermentability of Zymomonas
mobilis by overexpression of sodium ion tolerance gene ZMO0119. J. Biotechnol.
282 (20), 32–37.
Gavrilescu, M., Chisti, Y., 2005. Biotechnology—a sustainable alternative for chemical
industry. Biotechnol. Adv. 23, 471–499.
Ge, Y., Li, L., 2018. System-level energy consumption modeling and optimization for cel-
lulosic biofuel production. Appl. Energy 226 (15), 935–946.
German Agency for Technical Cooperation (GTZ); Worldwatch; German Federal
Ministry of Food; Agriculture and Consumer Protection (BMELV), 2006. Biofuels
for Transportation. Available at:http://www.worldwatch.org/system/files/EBF008_1.
pdf. (Accessed 10 October 2016).
Harvey, M., Pilgrim, S., 2011. The new competition for land: food, energy, and climate
change. Food Policy 36 (1), S40–S51.
Hon-Nami, K., 2006. A unique feature of hydrogen recovery in endogenous starchto-
alcohol fermentation of the marine microalga, Chlamydomonas perigranulata. Appl. Bio-
chem. Biotechnol. 131, 808–828.
Hirayama, S., Ueda, R., Ogushi, Y., Hirano, A., Samejima, Y., Hon-Nami, K., et al., 1998.
Ethanol production from carbon dioxide by fermentative microalgae. Stud. Surf. Sci.
Catal. 114, 657–660.