Page 24 - Biofuels for a More Sustainable Future
P. 24
Biofuels technologies: An overview of feedstocks, processes, and technologies 17
Huenteler, J., Lee, H., 2015. The Future of Low Carbon Road Transport; Rapporteur’s
Report. Belfer Center, Kennedy School of Government, Harvard University,
Cambridge, MA.
International Energy Agency (IEA), 2018. Biofuels for Transport. Tracking Clean Energy
Progress. https://www.iea.org/tcep/transport/biofuels. (Accessed 22 November 2018).
Jones, C.S., Mayfield, S.P., 2012. Algae biofuels: versatility for the future of bioenergy. Curr.
Opin. Biotechnol. 23 (3), 346–351.
Kousoulidou, M., Lonza, L., 2016. Biofuels in aviation: fuel demand and CO2 emissions
evolution in Europe toward 2030. Transp. Res. Part D: Transp. Environ. 46, 166–181.
Lane, 2017. The Industrial Status of Biofuel Technologies. https://www.biofuelsdigest.
com/bdigest/2017/01/11/the-industrial-status-of-biofuel-technologies. (Accessed 22
November 2018).
Larson, E.D., 2007. Biofuel Production Technologies: Status, Prospects and Implications
for Trade and Development. United Nations Conference on Trade and Development,
New York. UNCTAD/DITC/TED/2007/10.
Laurens, L.M.L., Chen-Glasser, M., McMillan, J.D., 2017. A perspective on renewable bioe-
nergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal Res.
24 (Part A), 261–264.
Liu, G., Bao, J., 2017. Maximizing cellulosic ethanol potentials by minimizing wastewater
generation and energy consumption: competing with corn ethanol. Bioresour. Technol.
245 (Part A), 18–26.
Markewitz, P., Leitner, W., Linssen, J., Zapp, P., M€uller, T., Schreiber, A., 2012. World-
wide innovations in the development of carbon capture technologies and the utilization
of CO2. Energy Environ. Sci. 6, 7281–7385.
Mendiara, T., Garcı ´a-Labiano, F., Abad, A., Gaya ´n, P., Ada ´nez, J., 2018. Negative CO2
emissions through the use of biofuels in chemical looping technology: a review. Appl.
Energy 232, 657–684.
Moomaw, W.R., 2018. EU Bioenergy Policies Will Increase Carbon Dioxide Concentra-
tions. Global Development and Environment Institute Tufts University. Climate Policy
Brief No. 7, February.
National Renewable Energy Laboratory (NREL), 2013. At $2.15 a Gallon, Cellulosic Eth-
anol Could Be Cost Competitive. Continuum 5. Fall, Available at: https://www.nrel.
gov/continuum/sustainable_transportation/cellulosic_ethanol.html. (Accessed 23
November 2018).
OECD-FAO, 2010. Agricultural Outlook 2010. Biofuel Production 2010–19. .
Oh, Y.K., Hwang, K.-R., Kim, C., Kim, J.R., Lee, J.-S., 2018. Recent developments and
key barriers to advanced biofuels: a short review. Bioresour. Technol. 257, 320–333.
Pattarkine, M.V., Pattarkine, V.M., 2012. Nanotechnology for algal biofuels. In: Gordon, R.,
Seckbach, J. (Eds.), The Science of Algal Fuels Volume 25 of the Series Cellular Origin,
Life in Extreme Habitats and Astrobiology, pp. 147–163.
Pienkos, P., Darzins, A., 2009. The promise and challenges of microalgal-derived biofuels.
Biofuels Bioprod. Biorefin. 3, 431–440.
Rathmann, R., Szklo, A., Schaeffer, R., 2010. Land use competition for production of food
and liquid biofuels: an analysis of the arguments in the current debate. Renew. Energy
35 (1), 14–22.
Renewable Energy Network 21 (REN21), 2016. Global Status Report. REN21, Paris.
Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., 2008. Microalgae
for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-
cost photobioreactor. Biotechnol. Bioeng. 102 (1), 100e12.
Ruangviriyachai, C., Niwaswong, C., Kosaikanon, N., Chanthai, S., Chaimart, P., 2010.
Pineapple peel waste for bioethanol production. J. Biotechnol. 150S, S10.