Page 386 - Biofuels for a More Sustainable Future
P. 386

342   Biofuels for a More Sustainable Future


          if 0   x   x +  [see the work of Zhang et al. (2005)]. It is apparent that an

          interval number can take an arbitrary value between its lower bound and
          upper bound.

          Definition 1 Distance between two interval numbers (Yue, 2011)
                     +             +
                      Š and y¼[y ,y ] are two arbitrary interval numbers, the dis-

          If x ¼ x , x½
                             +            +

                              Š to y¼[y ,y ] can be determined by
          tance from x ¼ x , x½
                                   q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                              2    +   +  2
                                                                      (12.1)
                           j x yj ¼  ð x  y Þ + x  yð    Þ
          Definition 2 Number product between a positive real number and an
          interval number (Zhang et al., 2005)
          The number product of a positive real number λ and an interval number
                   +
                    Š is defined as
          x ¼ x , x½
                                          +          +
                                                                      (12.2)
                                              ½
                              λ x ¼ λ x , x½  Š ¼ λx , λx Š
             Note that a crisp number λ could also be transformed into an interval
          number λ¼λ,λ].
          Definition 3 Addition (Bohlender and Kulisch, 2011)
                     +             +

                      Š and y¼[y ,y ] are two arbitrary interval numbers, the sum
          If x ¼ x , x½
          of the two interval numbers can be obtained by
                                  +        +             +   +
                                                                      (12.3)
                                               ½
                                      ½
                      x + y ¼ x , x½  Š + y , y Š ¼ x + y , x + y Š
          Definition 4 Subtraction (Moore, 1966; Dymova et al., 2013)
                     +             +

                      Š and y¼[y ,y ] are two arbitrary interval numbers, the sub-
          If x ¼ x , x½
          traction between two interval numbers can be determined by
                                  +        +          +  +
                                                                      (12.4)
                      x y ¼ x , x½  Š  y , y Š ¼ x  y ;x  y Š
                                      ½
                                               ½
          Definition 5 Multiplication (Zhang et al., 2005)
                     +
                                  +
          If x ¼ x , x Š and y¼[y ,y ] are two arbitrary interval numbers, the inter-


                ½
          val product can be obtained according to the following two cases:
                     +
          (1) when y >0, the interval product can be determined by
                                     +                  + +
                                                                      (12.5)
                                         ½
                         x y ¼ x , x½  Š  y , yŠ ¼ x y , x y Š
                                                 ½
                     +
          (2) when y <0, the interval product can be determined by
                                    +        +             +
                                                   +                  (12.6)
                                                 ½
                        x x ¼ x , x½  Š  y , y Š ¼ x y , x y Š
                                        ½
   381   382   383   384   385   386   387   388   389   390   391