Page 280 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 280

FINITE-ELEMENT ANALYSIS  257

                          Holberg, C., Heine, A-K., Geis, P., Schwenzer, K., and Rudzki-Janson, I. (2005), Three-dimensional soft tissue
                            prediction using finite elements, J. Orofacial Orthop. 66:122–134.
                          Huang, H. M., Lee, M. C., Chiu, W. T., Chen, C. T., and Lee, S. Y. (1999). Three-dimensional finite element
                            analysis of subdural hematoma, J. Trauma 47:538–544.
                          Jia, X., Zhang, M., Li X., and Lee, W. C. C. (2005), A quasi-dynamic nonlinear finite element model to investi-
                            gate prosthetic interface stresses during walking for trans-tibial amputees, Clin. Biomech. 20:630–635.
                          Klinnert, J., Nowak, M., and Lewis, C. (1994), Addition of a medial allograft to stabilize supracondylar femur
                            fractures, 1994 Adv. Bioeng. pp. 193–194.
                          Kuroda, S., and Akimoto, M. (2005), Finite element analysis of undermining of pressure ulcer with a simple
                            cylinder model, J. Nippon Med. Sch. 72:174–178.
                          Kurtz, S. M., Ochoa, J. A., White, C. V., Srivastav, S., and Cournoyer, J. (1998), Backside nonconformity and
                            locking restraints affect liner/shell load transfer mechanisms and relative motion in modular acetabular com-
                            ponents for total hip replacement, J. Biomech. 31:431–437.
                          LaDisa, J. F., Jr., Olson, L. E., Guler, I., Hettrick, D. A., Kersten, J. R., Warltier, D. C., and Pagel, P. S. (2005),
                            Circumferential vascular deformation after stent imlantation alters wall shear stress evaluated with time-
                            dependent 3D computational fluid dynamics models, J. Appl. Physiol. 98:947–957.
                          Lin, C-L., Lee, H-E., Wang, C-H., and Chang K-H. (2003), Integration of CT, CAD system and finite element
                            method to investigate interfacial stresses of resin-bonded prothesis,  Comp. Methods and Programs in
                            Biomed. 72:55–64.
                          Linder-Ganz, E., Shabshin, N., Itzchak, Y., and Gefen, A. (2007), Assessment of mechanical conditions in sub-
                            dermal tissues during sitting: a combined experimental-MRI and finite element approach,  J. Biomech.
                            40:1443–1454.
                          Magne, P., Perakis, N., Belser, U. S., and Krejci, I. (2002), Stress distribution of inlay-anchored adhesive fixed
                            partial dentures: a finite element analysis of the influence of restorative materials and abutment preparation
                            design, J. Prosth. Dent. 87:516–527.
                          Maurer, P., Holwig, S., and Schubert, J. (1999), Finite-element analysis of different screw diameters in the sagit-
                            tal split osteotomy of the mandible, J. Craniomaxillofac. Surg. 27:365–372.
                          Merz, B. R., Hunenbaart, S., and Belser, U. C. (2000), Mechanics of the implant-abutment connection: An
                            8-degree taper compared to a butt joint connection, Int. J. Oral Maxillofac. Implants 15:519–526.
                          Nowak, M. D. (1993), Linear versus nonlinear material modeling of the scapholunate ligament of the human
                            wrist, in H. D. Held, C. A. Brebbia, R. D. Ciskowski, H. Power (eds), Computational Biomedicine,
                            pp. 215–222, Computational Mechanics Publications, Boston.
                          Nowak, M. D., and Cherry, A. C. (1995), Nonlinear finite element modeling of the distal carpal arch, 1995
                            Advances in Bioengineering, pp. 321–322.
                          Nowak, M. D., Haser, K., and Golberg, A. J. (1999), Finite element analysis of fiber composite dental
                            bridges: The effect of length/depth ratio and load application method, 1999 Adv. Bioeng. pp. 249–250.
                          Nowak, M. D., and Logan, S. E. (1991), Distinguishing biomechanical properties of intrinsic and extrinsic human
                            wrist ligaments, J. Biomech. Eng. 113:85–93.
                          O’Brien, T. P., Grace, P., Walsh, M., Burke, P., and McGloughlni, T. (2005), Computational investigations of a
                            new prosthetic femoral-popliteal bypass graft design, J Vasc. Surg. 42(6):1169–1175.
                          Papafaklis, M. I., Bourantas, C. V., Theodorakis, P. E., Katsouras, C. S., Fotiadis, D. I., and Michalis, L. K.
                            (2007), Association of endothelial shear stress with plaque thickness in a real three-dimensional left main
                            coronary artery bifurcation model, Int. J. Cariol. 115:276–278.
                          Papaioannou,  T. G., Christofidis, C. C., Mathioulakis, D. S., and Stefanadis, C. I. ( 2007), A novel
                            design of a noncylindric stent with beneficial effects of flow characteristics: an experimental and
                            numerical flow study in an axisymmetric arterial model with sequential mild stenosis, Artif. Org.
                            31:627–638.
                          Portnoy, S., Yarnitzky, G., Yizhar, Z., Kristal, A., Oppenheim, U., Siev-Ner, I., and Gefen, A. (2007), Real-time
                            patient-specific finite element analysis of internal stresses in the soft tissues of a residual limb: a new tool for
                            prosthetic fitting, Ann. Biomed. Eng. 35:120–135.
                          Raghavan, M. L., Vorp, D. A., Federle, M. P., Makaroun, M. S., and Webster, M. W. (2000), Wall stress distrib-
                            ution on three-dimensionally reconstructed models of human abdominal aortic aneurysm,  J. Vasc.  Surg.
                            31:760–769.
   275   276   277   278   279   280   281   282   283   284   285