Page 279 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 279

256  BIOMECHANICS OF THE HUMAN BODY

           REFERENCES

                       Abu-Hasaballah, K. S., Nowak, M. D., and Cooper, P. S. (1997), Enhanced solid ankle-foot orthosis design:
                         Real-time contact pressures evaluation and finite element analysis, 1997 Adv. Bioeng. pp. 285–286.
                       An, K.-N., Berger, R. A., and Cooney, W. P. (eds.) (1991), Biomechanics of the Wrist Joint, Springer-Verlag,
                         New York.
                       Augereau, D., Pierrisnard, L., Renault, P., and Barquins, M. (1998), Prosthetic restoration after coronoradicular
                         resection: Mechanical behavior of the distal root remaining and surrounding tissue,  J. Prosthet. Dent.
                         80:467–473.
                       Birchall, D., Zaman, A., Hacker, J., Davies, G., and Mendlow, D. (2006), Analysis of haemodynamic distur-
                         bance in the atherosclerotic carotid artery using computational fluid dynamics,  Eur. Radiol.
                         16:1074–1083.
                       Bischoff, J. E., Arruda, E. M., and Grosh, K. (2000), Finite element modeling of human skin using an isotropic,
                         nonlinear elastic constitutive model, J. Biomech. 33:645–652.
                       Box, FMA., van der Geest, R. J., Rutten, M. C. M., and Reiber, J. H. C. (2005), The influence of flow, vessel
                         diameter, and non-Newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for
                         unsteady flow, Invest. Radiol. 40(5):277–294.
                       Bressloff, N. W. (2007), Parametric geometry exploration of the human carotid artery bifurcation, J. Biomech.
                         40:2483–2491.
                       Chen, M. C. Y., Lu, P., Chen, J. S. Y., and Hwang, N. H. C. (2005), Computational hemodynamics of an
                         implanted coronary stent based on three-dimensional cine angiography reconstruction, ASAIO J 51(4):
                         313–320.
                       Chu, Y. H., Elias, J. J., Duda, G. N., Frassica, F. J., and Chao, E. Y. S. (2000), Stress and micromotion in the taper
                         lock joint of a modular segmental bone replacement prosthesis, J. Biomech. 33:1175–1179.
                       Erdemir, A., Saucerman, J. J., Lemmon, D., Loppnow, B., Turso, B., Ulbrecht, J. S., and Cavanagh, P. R. (2005),
                         Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models,  J.
                         Biomech. 38:1798–1806.
                       Ferris, P., and Prendergast, P. J. (2000), Middle-ear dynamics before and after ossicular replacement, J. Biomech.
                         33:581–590.
                       Frauenfelder, T., Boutsianis, E., Schertler, T., Husmann. L., Leschka, S., Poulikakos, D., Marincek, B., and
                         Alkadhi, H. (2007a), Flow and wall shear stress in end-to-side and side-to-side anastomosis of venous coro-
                         nary artery bypass graft, Biomed. Eng. On-Line 6:35.
                       Frauenfelder, T., Lotfey, M., Boehm, T., and Wildermuth, S. (2007b), Computational fluid dynamics: hemody-
                         namic changes in abdominal aortic aneurysm after stent-graft implantation, Cardiovasc. Intervent. Radiol.
                         29:613–623.
                       Fung, Y. C. (1996), Biomechanics: Mechanical Properties of Living Tissues, 2d ed., Springer-Verlag, New York.
                       Giannoglou, G. D., Soulis, J. V., Farmakis, T. M., Giannakoulas, G. A., Parcharidis, G. E., and Louridas, G. E.
                         (2005), Wall pressure gradient in normal left coronary artery tree, Med. Eng. Physics 27:455–464.
                       Glor, F. P., Ariff, B., Hughes, A. D., Crowe, L. A., Verdonck, P. R., Barratt, D. C., Thom, S. A. McG., Firmin, D.
                         N., and Xu, X. Y. (2004), Image-based carotid flow reconstruction: a comparison between MRI and ultra-
                         sound, Physiol. Meas. 25:1495–1509.
                       Goh, J. C. H., Lee, P. V. S., Toh, S. L., and Ooi, C. K. (2005), Development of an integrated CAD-FEA process
                         for below-knee prosthetic sockets, Clin. Biomech. 20:623–629.
                       Grande, K. J., Cochran, R. P., Reinhall, P. G., and Kunzelman, K. S. (2000), Mechanisms of aortic valve incom-
                         petence: Finite element modeling of aortic root dilation, Ann. Thorac. Surg. 69:1851–1857.
                       Hart, J. de, Cacciola, G., Schreurs, P. J. G., and Peters, G. W. M. (1998), A three-dimensional analysis of a fiber-
                         reinforced aortic valve prosthesis, J. Biomech. 31:629–638.
                       Hart, J. de, Peters, G. W. M., Schreurs, P. J. G., and Baaijens, F. P. T. (2000), A two-dimensional fluid-structure
                         interaction model of the aortic valve, J. Biomech. 32:1079–1088.
                       Hendricks, F. M., Brokken, D., van Eemeren, J. T. W. M., Oomens, C. W. J., Baaijens, F. P. T., and Horsten, J. B.
                         A. M. (2003), A numerical-experimental method to characterize the nonlinear mechanical behavior of human
                         skin, Skin Res. Tech. 9:274–283.
   274   275   276   277   278   279   280   281   282   283   284