Page 171 - Biomimetics : Biologically Inspired Technologies
P. 171

Bar-Cohen : Biomimetics: Biologically Inspired Technologies DK3163_c005 Final Proof page 157 6.9.2005 12:11pm
















                                                                                                 5



                              Genetic Algorithms: Mimicking Evolution and
                                     Natural Selection in Optimization Models



                    Tammy Drezner and Zvi Drezner


                    CONTENTS
                    5.1  Introduction .......................................................................................................................................... 157
                        5.1.1  Common Metaheuristic Methods ........................................................................................... 158
                    5.2  The Framework of Genetic Algorithms............................................................................................... 159
                    5.3  Modifications of the Genetic Algorithm Framework .......................................................................... 160
                        5.3.1  Parallel Genetic Algorithms ................................................................................................... 161
                        5.3.2  Compounded Genetic Algorithms .......................................................................................... 161
                        5.3.3  Hybrid Genetic Algorithms .................................................................................................... 162
                        5.3.4  Mutations ................................................................................................................................ 162
                        5.3.5  Invasions ................................................................................................................................. 162
                        5.3.6  Gender..................................................................................................................................... 163
                        5.3.7  Distance-Based Parent Selection ............................................................................................ 163
                        5.3.8  Removal of Population Members........................................................................................... 164
                    5.4  An Illustration ...................................................................................................................................... 164
                        5.4.1  The Genetic Algorithm Process.............................................................................................. 167
                        5.4.2  Illustrating the Steepest Descent Algorithm........................................................................... 168
                        5.4.3  Illustrating a Mutation ............................................................................................................ 168
                        5.4.4  Calculating Diversity .............................................................................................................. 169
                    5.5  Application: Balancing a Turbine Engine ........................................................................................... 169
                        5.5.1  A Turbine Balancing Example ............................................................................................... 171
                    5.6  Discussion............................................................................................................................................. 172
                    References....................................................................................................................................................... 174






                                                 5.1  INTRODUCTION

                    Optimization problems are defined by an objective function. The objective function is a
                    dependent variable, i.e., it is a function of several independent variables. The objective is to find
                    the best combination of the independent variables such that the objective function is either
                    minimized or maximized (for clarity of the discussion we assume in this chapter that the problem
                    is minimization). Typically, the objective function is subject to a set of constraints that must
                    be satisfied.



                                                                                                157
   166   167   168   169   170   171   172   173   174   175   176