Page 303 - Biomimetics : Biologically Inspired Technologies
P. 303

Bar-Cohen : Biomimetics: Biologically Inspired Technologies  DK3163_c010 Final Proof page 289 21.9.2005 11:46am




                    Artificial Muscles Using EAP                                                 289

                    Jager E.W.H., O. Ingana ¨s, and I. Lundstro ¨m, Microrobots for micrometer-size objects in aqueous media:
                         potential tools for single cell manipulation, Science, Vol. 288 (2000), 2335–2338.
                    Jung K., J. Nam, and H. Choi, Micro-inchworm robot actuated by artificial muscle actuator based on dielectric
                         elastomer, Proceedings of the 2004 SPIE’s EAP Actuators and Devices (EAPAD), paper number
                         5385–47, Vol. 5385, San Diego, California, March 14–18 (2004).
                    Kaneto K., M. Kaneko, Y. Min, and A.G. MacDiarmid, Artifical muscle: electromechanical actuators using
                         polyaniline films, Syntheric Metals, Vol. 71 (1995), 2211–2212.
                    Katchalsky A., Rapid swelling and deswelling of reversible gels of polymeric acids by ionization, Experientia,
                         Vol. V (1949), 319–320.
                    Kim J., J.-Y. Kim, and S.-J. Choe, Electro-active papers: its possibility as actuators, in Bar-Cohen Y. (ed.),
                         Proceedings of the SPIE’s EAPAD Conference, Part of the 7th Annual International Symposium on
                         Smart Structures and Materials, Vol. 3987, ISBN 0-8194-3605-4 (2000), pp. 203–209.
                    Kornbluh K., R. Pelrine, Q. Pie, M. Rosenthal, S. Standford, N. NBowit, R. Heydt, H. Prahlad, and S.V.
                         Sharstri, Application of dielectric elastomer EAP actuators, Chapter 16, in Bar-Cohen, Y. (ed.),
                         Electroactive Polymer (EAP) Actuators as Artificial Muscles — Reality, Potential and Challenges
                         (2004), pp. 529–581.
                    Kuhn W., B. Hargitay, A. Katchalsky, and H. Eisenburg, Reversible dilatation and contraction by changing the
                         state of ionization of high-polymer acid networks, Nature, Vol. 165 (1950), 514–516.
                    Li F.K., W. Zhu, X. Zhang, C.T. Zhao, and M. Xu, Shape memory effect of ethylene-vinyl acetate copolymers,
                         Journal of Applied Polymer Science, Vol. 71, No. 7 (1999), 1063–1070.
                    Liu Z. and P. Calvert, Multilayer hydrogels and muscle-like actuators, Advanced Materials, Vol. 12, No. 4
                         (2000), pp. 288–291.
                    Mabboux P., and K. Gleason, F-19 NMR characterization of electron beam irradiated vinyllidene fluoride-
                         trifluoroethylene copolymers, Journal of Fluorine Chemistry, Vol. 113 (2002), 27.
                    Madden J.D.W., R.A. Cush, T.S. Kanigan, C.J. Brenan and I.W. Hunter, Fast-contracting conducting polymer-
                         based actuators, Synthetic Metals, Vol. 113 (2000), 185–192.
                    Madden J.D.W., P.G.A. Madden, and I.W. Hunter, Characterization of polypyrrole actuators: modeling and
                         performance, in Bar-Cohen Y. (ed.), Proceedings of SPIE 8th Annual Symposium on Smart Structures
                         and Materials: Electroactive Polymer Actuators and Devices, SPIE Press, San Diego, California
                         (March 2001), pp. 72–83.
                    Madden J.D.W., P.G.A. Madden, and I.W. Hunter, Conducting polymer actuators as engineering materials, in
                         Bar-Cohen Y. (ed.), Proceedings of SPIE 9th Annual Symposium on Smart Structures and Materials:
                         Electroactive Polymer Actuators and Devices, SPIE Press, San Diego, California (March 2002),
                         pp. 176–190.
                    Mussa-Ivaldi S., Real brains for real robots, Nature, Vol. 408 (16 November 2000), 305–306.
                    Nemat-Nasser S. and Li, J.Y. Electromechanical response of ionic polymer–metal composites, Journal of
                         Applied Physics, Vol. 87, No. 7 (2000), 3321–3331.
                    Nemat-Nasser S. and C.W. Thomas, Ionomeric polymer–metal composites, Chapter 6, in Bar-Cohen, Y. (ed.),
                         Electroactive Polymer (EAP) Actuators as Artificial Muscles, 2nd Edition, ISBN 0-8194-5297-1, SPIE
                         Press, San Diego, California, Vol. PM136 (March 2004), pp. 171–230.
                    Oguro K., Y. Kawami and H. Takenaka, Bending of an ion-conducting polymer film-electrode composite
                         by an electric stimulus at low voltage, Transactions Journal of Micromachine Society, Vol. 5 (1992),
                         27–30.
                    Oguru K., N. Fujiwara, K. Asaka, K. Onishi, and S.Sewa, Polymer electrolyte actuator with gold electrodes,
                                               th
                         Proceedings of the SPIE’s 6 Annual International Sympsium on Smart Structures and Materials,
                         SPIE Proc. Vol. 3669 (1999), pp. 64–71.
                    Osada Y. and R. Kishi, Reversible volume change of microparticles in an electric field, Journal of Chemical
                         Society, Vol. 85 (1989), 665–662.
                    Otero T.F., H. Grande, and J. Rodriguez, A new model for electrochemical oxidation of polypyrrole
                         under conformational relaxation control, Journal of Electroanalytical Chemistry, Vol. 394 (1995),
                         211–216.
                    Pei Q., R.M. Rosenthal, R. Perline, S. Stanford, and R. Kornbluh. 3-D multifunctional electroelastomer roll
                         actuators and thier application for biomimetic walking robots, in McGoWan A. (ed.), Proceedings of
                         SPIE’s Smart Structers and Materials 2002: Industrial and Commerical Applications of Smart
                         Structures Technology, Vol. 4698 (2002), 246–253.
   298   299   300   301   302   303   304   305   306   307   308