Page 20 - Calculus Demystified
P. 20

CHAPTER 1
                                      Basics
                           The point Z is 5 units to the right of the y-axis and 4 units above the x-axis.  7
                         Therefore its coordinates are (5, 4).
                           The point W is 6 units to the left of the y-axis and 5 units below the x-axis.
                         Therefore its coordinates are (−6, −5).
                     You Try It: Sketch the points (3, −5), (2, 4), (π, π/3) on a set of axes. Sketch
                     the set {(x, y): x = 3} on another set of axes.
                         EXAMPLE 1.6
                         Sketch the set of points   ={(x, y): y = 3}. Sketch the set of points k =
                         {(x, y): x =−4}.
                         SOLUTION
                           The set   consists of all points with y-coordinate equal to 3. This is the set
                         of all points that lie 3 units above the x-axis. We exhibit   in Fig. 1.9. It is a
                         horizontal line.













                                                     Fig. 1.9

                           The set k consists of all points with x-coordinate equal to −4. This is the set
                         of all points that lie 4 units to the left of the y-axis. We exhibit k in Fig. 1.10.
                         It is a vertical line.
                         EXAMPLE 1.7
                         Sketch the set of points S ={(x, y): x> 2} on a pair of coordinate axes.

                         SOLUTION
                           Notice that the set S contains all points with x-coordinate greater than 2.
                         These will be all points to the right of the vertical line x = 2. That set is
                         exhibited in Fig. 1.11.

                     You Try It: Sketch the set {(x, y): x + y< 4}.

                     You Try It: Identify the set (using set builder notation) that is shown in Fig. 1.12.
   15   16   17   18   19   20   21   22   23   24   25