Page 86 - Calculus Demystified
P. 86

Foundations of Calculus
                     CHAPTER 2
                     Practice is the essential tool in mastery of these ideas. Be sure to do all the You Try  73
                     It problems in this section.
                         EXAMPLE 2.14
                         Calculate the derivative

                                             d              3
                                               [(sin x + x) · (x − ln x)].
                                             dx
                         SOLUTION
                                                                                       2
                                                                                3
                           We know that (d/dx) sin x = cos x, (d/dx)x = 1, (d/dx)x = 3x , and
                         (d/dx) ln x = (1/x). Therefore, by the addition rule,
                                     d               d         d
                                       (sin x + x) =   sin x +   x = cos x + 1
                                    dx              dx        dx
                         and
                                     d   3           d  3   d          2   1
                                       (x − ln x) =    x −     ln x = 3x −  .
                                    dx              dx      dx             x
                         Now we may conclude the calculation by applying the product rule:

                         d 
             3
                            (sin x + x) · (x − ln x)
                        dx
                               d                                    d
                                                                         3
                                              3
                            =    (sin x + x) · (x − ln x) + (sin x + x) ·  (x − ln x)
                              dx                                    dx

                                                                        1
                                           3                         2
                            = (cos x + 1) · (x − ln x) + (sin x + x) · 3x −
                                                                        x

                                                               1
                                 3          3         2
                            = (4x − 1) + x cos x + 3x sin x −    sin x − (ln x cos x + ln x).
                                                               x
                         EXAMPLE 2.15
                         Calculate the derivative
                                                      x
                                                 d   e + x sin x
                                                                 .
                                                dx      tan x
                         SOLUTION
                                               x
                                                     x
                           We know that (d/dx)e = e , (d/dx)x = 1, (d/dx) sin x = cos x, and
                                         2
                         (d/dx) tan x = sec x. By the product rule,

                           d               d                d
                              [x · sin x]=   x · sin x + x ·  sin x = 1 · sin x + x · cos x.
                           dx              dx              dx
   81   82   83   84   85   86   87   88   89   90   91