Page 87 - Calculus Demystified
P. 87

CHAPTER 2
                      74
                                   Therefore, by the quotient rule,   Foundations of Calculus
                                      x                          x              x
                                d   e + x sin x    tan x · (d/dx)(e + x sin x) − (e + x sin x)(d/dx) tan x
                                                 =
                               dx      tan x                             (tan x) 2
                                                                                 x
                                                           x
                                                   tan x · (e + sin x + x cos x) − (e + x sin x) · (sec x) 2
                                                 =
                                                                        (tan x) 2
                                                                                  x
                                                    x
                                                                                                    2
                                                                                      2
                                                   e tan x + tan x sin x + x sin x − e sec x − x sin x sec x
                                                 =                                                    .
                                                                             2
                                                                          tan x

                                                                 d                     x
                               You Try It: Calculate the derivative  sin x · cos x −           .
                                                                                     x
                                                                dx                  e + ln x
                                   EXAMPLE 2.16
                                   Calculate the derivative
                                                            d      3   2
                                                              (sin(x − x )).
                                                           dx
                                   SOLUTION
                                     This is the composition of functions, so we must apply the Chain Rule. It is
                                   essential to recognize what function will play the role of f and what function
                                   will play the role of g.
                                                                          3
                                                                               2
                                     Notice that, if x is the variable, then x − x is applied first and sin
                                                                      3
                                                                           2
                                   applied next. So it must be that g(x) = x − x and f(s) = sin s. Notice that
                                                                        2
                                   (d/ds)f (s) = cos s and (d/dx)g(x) = 3x − 2x. Then
                                                                 2
                                                            3
                                                        sin(x − x ) = f ◦ g(x)
                                   and
                                              d      3    2     d
                                                (sin(x − x )) =   (f ◦ g(x))
                                             dx                 dx

                                                                 df          d
                                                             =      (g(x)) ·   g(x)
                                                                 ds         dx
                                                                             2
                                                             = cos(g(x)) · (3x − 2x)
                                                                          2
                                                                     3
                                                                                 2
                                                             =[cos(x − x )]· (3x − 2x).
                                   EXAMPLE 2.17
                                   Calculate the derivative
                                                                     2
                                                            d       x
                                                               ln        .
                                                            dx    x − 2
   82   83   84   85   86   87   88   89   90   91   92