Page 92 - Calculus Demystified
P. 92

Foundations of Calculus
                     CHAPTER 2
                        2. Determine whether the given function f is continuous at the given point c.  79
                            Give careful justifications for your answers.
                                          x − 1
                              (a)  f(x) =           c =−1
                                          x + 1
                                          x − 1
                              (b)  f(x) =           c = 3
                                          x + 1

                              (c)  f(x) = x · sin(1/x)  c = 0
                              (d)  f(x) = x · ln x  c = 0


                                           x 2  if x ≤ 1
                              (e)  f(x) =                   c = 1
                                           x    if 1 <x

                                           x 2  if x ≤ 1
                              (f)  f(x) =                   c = 1
                                           2x   if 1 <x

                                           sin x    if x ≤ π
                              (g)  f(x) =                        c = π
                                           (x − π) if π< x
                              (h)  f(x) = e ln x+x  c = 2
                        3. Use the definition of derivative to calculate each of these derivatives.
                                                      2

                              (a)  f (2) when f(x) = x + 4x

                              (b)  f (1) when f(x) =−1/x 2
                        4. Calculate each of these derivatives. Justify each step of your calculation.

                                      x
                              (a)
                                     2
                                    x + 1
                                   d
                                          2
                              (b)     sin(x )
                                   dx
                                   d        3   2
                              (c)    t · tan(t − t )
                                   dt
                                       2
                                   d x − 1
                              (d)
                                       2
                                   dx x + 1
                              (e)  [x · ln(sin x)]
                                   d  s(s+2)
                              (f)    e
                                   ds
   87   88   89   90   91   92   93   94   95   96   97