Page 15 - Calculus with Complex Numbers
P. 15

Ffgure / . 4

     'We write
        arg (1 + i ) = zr/4 (PV).
       For general z = .x + iy we have cos 0 = x(r sin 0 = y/r (see Figure 1.3).
     Therefore


          = r cos 0 + ir sinp
          = rtcos 0 + i sin 0)
              io
          = r d  ,
     since, by Taylor's theorem












           = cos p + i sin p.
     W e call the formula
         i0
        e = cos p + i sin p
     Euler's formula. We call the representation z = reio the polarform for z. We call
     the representation z = .x + iy the Cartesian form for z. For example 1 + i
     .
      2
     .$,//--c0,r/4 (see Figure 1.4).
     I .7  D e M oivre's theore m

     An immediate consequence of Huler's formula (see Section 1.6) is the resultknown
     as de M oivre 's theorem viz.

        YOS P + i Sin 0)n = (ei P)X = eino = COS l10 + i Sin 110.
   10   11   12   13   14   15   16   17   18   19   20