Page 17 - Calculus with Complex Numbers
P. 17

Ayplication 4  Formulae of the above type are useful for integrating powers of
     cos 0 sin 0. For example


        j coszp vlo - j . (1 + coscp) vlo - .) (é? + Sinzpj ,
                       )
                                                 1
         j sinz ovlo - j ) (1 - coscp) vlo - ) (é? - Sinzpj .
                                                 1



     I .9  rlth roots
     Suppose we have two complex numbers z = reio w = seis . lf we multiply them
     together we obtain

                i (9 +/)
        .:: N7 =  rs c   ,

     which shows that Izv?l= IzII 'r1as claimed in Section 1.2. Also that arg zw =


     arg c + arg w. Inparticular, taking z = w we have .:2 = rlelio and more generally
     cn = rnenio It follows that
         1/n
        C      1/n ioln

          '   = r ' d  '  .
     Observe that rl/n is the unique positive real rlth root of r whilst eio/n has n
                                                     ,
     possible values.
       For example, if z = - 8 then we have


                i:c   3fn'   5i:c
           .1 = 8c  = 8c  = 8c  = . . .
         1 /3  tz i:c(3 g i n'  g 5f n'/3
        C   =    t    ty  ,  ty   .
                y
                   ,
     Hven though arg (-8) has infinitely many values, there are only 3 distinct cube
     roots. We define the principal value of (- 8)1/3 to be that which corresponds to the
     principal value of arg (-8), namely n'. So (-8)1/3 = lei=I3 (PV).
   12   13   14   15   16   17   18   19   20   21   22