Page 29 - Calculus with Complex Numbers
P. 29

Ffgure 2.8


     2.8  A pp I ication 2

     The inequality Isin .x I s 1 for real .x fails for complex variables. lf we write

     z = .x + iy, then we have

        I  sin cI2 = Isint.x + iy) 12 = sin2 .x coshz y + cos2 .x sinhz y
               = sin2  . x(1 + sinhz y) + (1 - sin2 x) sirthz y = sin2  x + sinhz y .
                                          .
                                                        .
     So if, for example, z = zr/2 + iE, where E7> 0, then I sin zl2 = 1 + sinhz (F > 1.


     2.9  A pp I ication 3
     The only zeros of sin z for complex z are the real zeros at z = n:r for integral rl.
     This is because if z = .x + iy and sin z = 0 then

        0 = I sin zI2 = sin2 .x + sirthz y.

     Therefore sin.x = sirth y = 0 which gives .x = n:r y = 0 and hence z = nn'.
       Similarly we leave it as an exercise for the reader to show that the only zeros
     of cos z for complex z are at z = n:r + zr/2 for integral rl.


     2. I 0  Identities for hyperbol i c fun ctions

     The fundamental formulae (see Section 2.6) can be used to obtain identities for
     hyperbolic functions from analogous identities for trigonometric functions. For
     example, the trigonometric identity sin2 x + cos2
                                            .x = 1 gives, on substituting ix
                                     .
     for .x,
   24   25   26   27   28   29   30   31   32   33   34