Page 33 - Calculus with Complex Numbers
P. 33

D e r i v at i ve s
















     3 . I  D i ffe re nti ab i I i ty and co nti n u i ty
     For a real function f @) of a real variable .x the derivative ./'/ @) is delined as the
     limit
          ?  f  (  f (x + h) - flx)
               h
                 yt)
           . 1 ) = li     h       .
                ...
     Observe that (see Figtlre 3.1)
         f(x + h) - flx)
               h
     is the gradient of the line P Q which converges to the tangent at P as Q --> P . So
     f' @) is the gradient of the tangent at P.
       For example, if flx) = .x2 then we have

         f(x V h) - flx)  V V h)l - .12  .x2 + lxh + hl - .x2
               h               h                h
                          lxh + hl
                       =          =  2.x + h,
                             h
















        Ffgure .? . /
   28   29   30   31   32   33   34   35   36   37   38