Page 67 - Calculus with Complex Numbers
P. 67

Ffgure 8.2


     where y = n + yz as in Section 6.2. The integrand has singularities at the solutions
     of the equation ./ + 1 = O which are û?, 0)3 û)5 û)7 (Figure 6.2) where û? = ei=/4
     is the primitive 8t.11 root of unity (see Section 1. 10).
       Differentiating the denominator we lind the residues of the integrand at z =
     û?, 0)3 are 1/4*3 1/4*9 respectively. Therefore,

             dz 1 = ln'i 4u?3 + 4.9 = (2.9 (û? + 1) =

                                                                  ,
                                                       .

                                                      1

                                                            =
             +
                                                                1
        j c4             1  1  n'i (5  n'i ( 1 - i ) zr (1 + i )
                                                        ,
                                                                 .
                                                       ,
                                                                  ,
         v
     since *6 = -ï . nut û? = (1 + illp/'I so we get
     as R --> co. Therefore
          R  dx          dz         dz         dz      =
                   =          =          -          ->
         -            /1  . :4 + 1   /  . / + 1  /2 . / + 1  .vC
           R .x4 + 1
     as R --> co, which shows that
          OD  dx               >
                   Converges =   .
             w 4 + 1          X''j

     6 .6  S i ngu I ari ti e s o n the real axi s

     W e cannot evaluate the integral
          O  dx
         0  . x3 + 1
   62   63   64   65   66   67   68   69   70   71   72