Page 70 - Calculus with Complex Numbers
P. 70

Ffgure 8.5


       On p  We have z = --t (R k: t k: r). Therefore
           d  i .      R  - i t
                         d
             z
              dz = -         dt .
         /3  z        r   t
       Combining these two integrals we get
                       i k;
                                 e
            i k;
           e          t?       R  i t - e         R jyj j
                                       --i t
                                                    S

           -  -   dz +   -- dz =          dt = li       dt.
          1
         p' Z       py  Z     r      t           r   t

       On yz  We have (integrating by parts)
           d  iz    d  iz      d iz
              dz =        +       dz .
         p'  z       iz        izl
                              z
          z             pv   p'
       The lirst term on the right-hand side
                   - i R  t?
          i k;
         t?       e      i R    g COS p
         -s-   =      -     = -       --> O
          l .!  /  - i R  i R     i R
           :
              2
     as R --> co. W hilst the second term
            eiz      a.w  a.
               dz :%    = - --> 0
            iz1      42    R
     as R --> co. Therefore
           d iz
           -    dz --> 0
            Z
     as R --> co.
       On y4  We have z = reit (zr k: t k: 0). Therefore,

           eiz        Jc      1 co (jcln
              dz =  - +  - )-)  Jc.
         v  2       :. 2    :. 2    n !

          4
                     4
                             4
                                 1
   65   66   67   68   69   70   71   72   73   74   75