Page 76 - Calculus with Complex Numbers
P. 76

7.4  Boundedness of cot.z
     From Section 2.8 we have
                       2  cos2  x + sinhz y
        I  cot zl =     =     .
             2  COS Z

                  sin z   sin2 x + sinhz y  ,
                              .
     where z = .x + iy.
       For y lixed we have
        cos2  x + sinhz y  1 + sinhz y  coshz y
            .
                      s            =        = ()0th
                                                 zy
         sin2 x + sinhz y   sinhz y   sinhz y       ,
            .

     which shows that I cot z Is coth zr/2 = 1.09033 141 1 . . . for all z eE the horizontal
     sides of yx for all N k: 1.
       For .x lixed = (N + 1/2):v we have
        cos2  x + sinhz y   sinhz y
            .
                      =            s 1,
         sin2 x + sinhz y   1 + sinhz y
            .
     which shows that I cot z I s 1 for all z eEthe vertical sides of yx for all N k: 1.




       Hence we have Icot zls M = tl0th zr/2 for all z eEyx for all N k: 1.
       W e can now show
            cot z
              2  dz --> 0
         (JN  . !
             :

     as N --> co. For z e yx we have IzIk: (N + 1/2)> > Nn', and the length of
     yx is 8(.V + 1/2)> :é 9Nn' for N k: 4. Therefore by the estimate lemma (4.4)
     we have








     7.5  U se of cosec az
     Having shown that





     we can obtain the sum of
   71   72   73   74   75   76   77   78   79   80   81