Page 78 - Calculus with Complex Numbers
P. 78

Hence we obtain

         oo (- 1)n   :7.,2
             nl       12 '
         1
     equivalently,

            1    1    1        :/2
        1 -  +  -  + . . . = 12
                 ï
             x
                  f

                      l


                     k
            è
     as before.
     7.6  U se of tan a
                     z
     W e can sum the series
     given that





     by observing that
















       Alternatively, we can use the integral
           tall z
             2  dz ,
         pk  .'
             !
     where yx is the square centre at 0 with half side Nn'(Figure 7.2).

       The singularities of tan z are at z = (rl + 1/2):v with residues - 1. Therefore
     the residue of tan z/zl at c = (r! + 1/2):v is

                 tan z         1              4
           Res        =z -           =z -           .
                                                  ,
        z=(n+1/z),r .::2   (n + 1/2)2>2   (2r! + 1)2:7.2
   73   74   75   76   77   78   79   80   81   82   83