Page 104 - Calculus Workbook For Dummies
P. 104

88       Part III: Differentiation



                                                                                 3
                                                 dy                            y -  2 xy +  1
                                  3
                             2
                                          x
                    C For x y =  y x +  y 5 + , find   dx  by implicit differentiation.  y = l  - 3 y x +  x -  5
                                                                                 2
                                                                                       2
                         This time you’ve got two products to deal with, so use the product rule for the two products and
                         the regular rules for the other two terms.
                                   2 l   2     3 l   3
                                 _ x i  y +  x y = l _  y i  x +  y x + l  y 5 + l  1
                                               2
                                         2
                                                 l
                                                      3
                                   2 xy +  x y = l  3 y y x +  y +  y 5 + l  1
                                    2
                              2
                                              3
                                      l
                                                1
                            x y - l  3 y y x -  y 5 = l  y + -  2 xy
                                     2
                                 2
                                              3
                             y x -  3 y x - i  y -  2 xy +  1
                                         5 =
                              l _
                                                3
                                               y -  2 xy +  1
                                          y = l
                                                      2
                                                 2
                                             - 3 y x +  x -  5
                   *C    If  y +  cos y =  sin x , find the slope of the curve at d  π  , 0n. The slope is zero.
                                2
                                          2
                                  3
                                       5
                                                                       10
                         You need a slope, so you need the derivative.
                                                  3 l
                                                            2
                                      3
                                              3
                           yl  +  2 cosy $ _ - siny _ i  y i  =  cos 5 x ^ i  10 xh
                                                         _
                           \                         1444 2444   3
                          Implicit  1444444 2444444 3
                                        Chain Rule       Chain Rule
                         Differentiation
                                      ] twice nested g
                                                2
                                     3
                                            3
                                                            5
                             y + l  2 cosy - siny _i  3 y y =  10 x  cos x  2
                                      _
                                                  li
                                               \
                                               Implicit
                                             Differentiation
                                                  3
                                 y 1 -  y 6  2  cosy  3 siny i  =  10 x  cos x  2
                                                            5
                                  l _
                                                         10 x cos x  2
                                                               5
                                                   y = l   2    3   3
                                                     1 -  y 6  cosy  siny
                         You need the slope at x =  π  , y = 0, so plug those numbers in to the derivative. Actually, you
                                                10
                         can save yourself a lot of work if you notice that the numerator will equal zero (because
                                  2
                                π
                         cos 5 e  o  =  0) and the denominator will equal 1 (because y = 0). And thus the slope of the
                               10
                         curve at this point is zero. A tangent line with a zero slope is horizontal, and because this
                         tangent line touches the curve where y = 0, the tangent line is the x-axis.
                                4
                    D For y = x , find the 1st through 6th derivatives.
                              y = l  4 x  3
                             y = ll  12 x  2
                              lll
                             y =  24 x
                              ( )
                              4
                            y =  24
                              ( )
                              5
                            y =  0
                              ( )
                              6
                            y =  0
                         Extra credit:  y  (2005 ) =  0
                                      3
                                5
                    E For  y =  x +  10 x find the 1st, 2nd, 3rd, and 4th derivatives.
                                   4
                              y = l  5 x +  30 x  2
                                    3
                             y = ll  20 x +  60 x
                              lll
                                    2
                             y =  60 x +  60
                              ( ) 4
                            y =  120 x
   99   100   101   102   103   104   105   106   107   108   109