Page 224 - Calculus Workbook For Dummies
P. 224

208       Part IV: Integration and Infinite Series



                         7. You want to solve for  #  e  x sin x dx, so bring them both to the left side and solve.


                                        =
                            2  e #  x  sin x dx e  x  sin x -  e  x  cosx +  C
                              e #  x  sin x dx =  e  x  sin x  -  e  x  cosx  +  C
                                           2        2
                                                    3
                    g #    3  sin cos x dx =  3  sin  / 4 3  x -  10  sin 10 /3  x +  C
                                   3
                               x
                                          4
                         1. Split off one cosx:  #  3  sin cos x cosx dx
                                                      2
                                                 x
                         2. Convert the even number of cosines into sines with the Pythagorean Identity.
                            = #  3  sin x 1 -  sin xi cosx dx = #  3  sin cosx dx - # sin x cosx dx
                                                                            / 7 3
                                           2
                                                             x
                                     _
                                                                  3   / 4 3  3  10 /3
                         3. Integrate with u-substitution with u =  sin x: =  sin x -  sin  x +  C
                                                                  4        10
                          / π 6
                   *h #    cos sin t dt =  π
                                  2
                              4
                               t
                                        96
                         0
                                                                              1 +  cos x         1 -  cos x
                                                                                                       2
                                                                                    2
                                                                                             2
                                                                          2
                         1. Convert to odd powers of cosine with trig identities cos x =  and sin x =    .
                                                                                 2                  2
                               / π 6      2
                                       2
                                                 2
                                 1 +  cos t  1 -  cos t
                            = # c        m         dt
                                    2          2
                              0
                         2. Simplify and FOIL.
                                 / π 6                     / π 6    / π 6      / π 6        / π 6
                              1                          1       1           1           1
                                        2
                                                                       2
                                                                                   2
                                                                                    2
                                                                                                2
                                                                                               3
                            = # _ 1 -  cos t 1 + cos t dt = #  1 dt + # cos tdt- # cos tdt- # cos tdt
                                         2 ^ i
                                                  2 h
                              8                          8       8           8           8
                               0                          0       0           0           0
                         3. Integrate. The first and second are simple; for the third, you use the same trig identity again;
                           the fourth is handled like you handled problem 7. Here’s what you should get:
                                 / π 6   / π 6        / π 6    / π 6       / π 6       / π 6
                            = #  1 dt + #  cos tdt-  1  #  1 dt -  1  #  cos tdt- #  cos tdt+ #  sin t 2  cos tdt
                                                                                     1
                              1
                                      1
                                                                        1
                                                                                           2
                                             2
                                                                                                2
                                                                   4
                                                                               2
                              8       8           16       16           8            8
                               0        0           0         0           0           0
                                 / π 6    / π 6      / π 6
                                                   1
                              1  #     1  # cos tdt+ #  2
                                                              2
                            =     dt -       4        sin t 2  cos tdt
                              16      16           8
                                0       0           0
                                  / π 6      / π 6       / π 6
                              1       1          1   3
                            =   t E  -  sin t 4 E  +  sin t 2 E
                              16     64         48
                                  0          0           0
                              π     3    3
                            =   -     +
                              96  128  128
                              π
                            =
                              96
                   *i #   sec x tan x dx =  1  sec x -  1  sec x +  C
                             3
                                  3
                                             5
                                                      3
                                         5        3
                         1. Split off sec tan x: = # sec x tan x  sec tan x dx
                                                       2
                                                  2
                                                             x
                                     x
                         2. Use the Pythagorean Identity to convert the even number of tangents into secants.
                            = #  sec x _ sec x -  1i  sec tan x dx
                                        2
                                                  x
                                  2
                            = #  sec x sec tan x dx - #  sec x sec tan x dx
                                  4
                                                      2
                                        x
                                                           x
                                                      1   5   1    3
                         3. Integrate with u-substitution: =  sec x -  sec x +  C
                                                      5       3
   219   220   221   222   223   224   225   226   227   228   229