Page 334 - Caldera Volcanism Analysis, Modelling and Response
P. 334
Structural Development of Calderas 309
Branney, M.J., 1995. Downsag and extension at calderas: new perspectives on collapse geometries
from ice-melt, mining, and volcanic subsidence. Bull. Volcanol., 57, 303–318.
Branney, M.J., Kokelaar, P., 1994. Volcanotectonic faulting, soft-state deformation and rheomorphism
of tuffs during development of a piecemeal caldera, English Lake District. Geol. Soc. Am.
Bull., 106, 507–530.
Cailleau, B., Walter, T.R., Janle, P., Hauber, E., 2003. Modeling volcanic deformation in a regional
stress field: implications for the formation of graben structures on Alba Patera, Mars.
J. Geophys. Res., 108, E12, 5141, doi: 10.1029/2003JE002135.
Capaccioni, B., Nappi, G., Renzulli, A., Santi, P., 1987. The eruptive history of Vepe Caldera (Latera
volcano): a model inferred from structural and geochemical data. Periodico Mineralogia, 56,
269–283.
Carle, S.F., 1988. Three-dimensional gravity modelling of the geologic structure of Long Valley
caldera. J. Geophys. Res., 93, 13237–13250.
Cole, J.W., Milner, D.M., Spinks, K.D., 2005. Calderas and caldera structures: a review. Earth Sci.
Rev., 69, 1–96.
Di Filippo, M., 1993. Sabatini Volcanic Complex. C.N.R., Roma, 109 pp.
Druitt, T.H., Sparks, R.S., 1984. On the formation of calderas during ignimbrite eruptions. Nature,
310, 679–681.
Fridrich, C.J., Mahood, G.A., 1984. Reverse zoning in the resurgent intrusions of the Grizzly Peak
cauldron, Sawatch Range, Colorado. Geol. Soc. Am. Bull., 95, 779–787.
Fridrich, C.J., Smith, R.P., De Witte, E., McKee, E.H., 1991. Structural, eruptive, and
intrusive history of the Grizzly Peak caldera, Sawatch range, Colorado. Geol. Soc. Am. Bull.,
103, 1160–1177.
Geshi, N., Shimano, T., Chiba, T., Nakada, S., 2002. Caldera collapse during the 2000 eruption of
Miyakejima volcano, Japan. Bull. Volcanol., 64, 55–68.
Geyer, A., Folch, A., Martı `, J., 2006. Relationship between caldera collapse and magma chamber
withdrawl: an experimental approach. J. Volcanol. Geotherm. Res., 157, 375–386.
Gudmundsson, A., Nilsen, K., 2006. Ring faults in composite volcanoes: structures, models, and stress
fields associated with their formation. J. Geol. Soc. Lond., 269, 83–108.
Hallinan, S., 1993. Nonchaotic collapse at funnel calderas: gravity study of the ring fractures at
Guayabo caldera, Costa Rica. Geology, 21, 367–370.
Henry, C.H., Price, J.G., 1984. Variations in caldera development in the Tertiary volcanic field of
Trans-Pecos Texas. J. Geophys. Res., 89, 8765–8786.
Holohan, E.P., Troll, V.R., Walter, T.R., Munn, S., McDonnell, S., Shipton, Z.K., 2005. Elliptical
calderas in active tectonic settings: an experimental approach. J. Volcanol. Geotherm. Res.,
144, 119–135.
Hubbert, M.K., 1937. Theory of scale models as applied to the study of geologic structures. Bull.
Geol. Soc. Am., 48, 1459–1520.
Kennedy, B., Styx, J., 2003. Igneous rock associations of Canada 2. Stages in the temporal evolution of
calderas. Geosci. Can., 30, 129–140.
Kennedy, B., Styx, J., Vallance, J.W., Lavalle `e, Y., Longpre `, M.A., 2004. Controls on caldera structure:
results from analogue sandbox modelling. Geol. Soc. Am. Bull., 106, 515–524.
Komuro, H., 1987. Experiments on cauldron formation: a polygonal cauldron and ring fractures.
J. Volcanol. Geotherm. Res., 31, 139–149.
Lavalle `e, Y., Stix, J., Kennedy, B., Richer, M., Longpre `, M.A., 2004. Caldera subsidence in areas of
variable topographic relief: results from analogue modelling. J. Volcanol. Geotherm. Res., 129,
219–236.
Lipman, P.W., 1984. The roots of ash flow calderas in western North America: windows into the tops
of granitic batholiths. J. Geophys. Res., 89, 8801–8841.
Lipman, P.W., 1997. Subsidence of ash-flow calderas: relation to caldera size and magma-chamber
geometry. Bull. Volcanol., 59, 198–218.
Lipman, P.W., 2003. Geometrically Complex Calderas and Underlying Magma Chambers
in the western USA. Proceedings of the IUGG XXIII Assembly, Sapporo, Japan,
pp. 526–527.