Page 333 - Caldera Volcanism Analysis, Modelling and Response
P. 333
308 Valerio Acocella
end-members may correspond to a specific stage. While such a continuum is
defined by precise structural features and controlled by progressive subsidence,
specific geometries result from secondary factors (roof aspect ratio, collapse
symmetry, pre-existing faults), not diagnostic of the collapse stage.
ACKNOWLEDGEMENTS
The author thanks A. Folch, R. Funiciello, A. Gudmundsson, J. Martı `, H. Schmincke and
T. Walter for stimulating discussions. M. Branney, J. Gottsmann, W. Mueller, S. Self, K. Spinks and
T. Yoshida helped with the compilation of data on natural calderas. K. Spinks and B. Kennedy
provided enthusiastic and constructive comments, which improved the paper. K. Spinks also improved
the English. This study was inspired by a solicited talk at the ‘‘Caldera volcanism: Analysis,
modelling and response’’ workshop, held in Tenerife (Spain), October 2005 and organised by J. Martı ´
and J. Gottsmann.
REFERENCES
Acocella, V., 2006a. Caldera types: how end-members relate to evolutionary stages of collapse.
Geophys. Res. Lett., 33, L18314, doi: 10.1029/2006GL0274340.
Acocella, V., 2006b. Regional and local tectonics at Erta Ale caldera, Afar (Ethiopia). J. Struct. Geol.,
28, 1808–1820.
Acocella, V., 2007. Understanding caldera structure and development: an overview of analogue
models compared to nature. Earth Sci. Rev., 85, 125–160.
Acocella, V., Cifelli, F., Funiciello, R., 2000. Analogue models of collapse calderas and resurgent
domes. J. Volcanol. Geotherm. Res., 104, 81–96.
Acocella, V., Cifelli, F., Funiciello, R., 2001. Formation and architecture of nested collapse calderas:
insights from analogue models. Terra Nova, 13, 58–63.
Acocella, V., Funiciello, R., Marotta, E., Orsi, G., de Vita, S., 2004. The role of extensional structures
on experimental calderas and resurgence. J. Volcanol. Geotherm. Res., 129, 199–217.
Acocella, V., Korme, T., Salvini, F., Funiciello, R., 2002. Elliptic calderas in the Ethiopian Rift:
control of pre-existing structures. J. Volcanol. Geotherm. Res., 119, 189–203.
Almond, D.C., 1977. Sabaloka igneous complex, Sudan. Philos. Trans. R. Soc. Lond. Series A,
287(1348), 595–633.
Aramaki, S., Takahashi, M., Nozawa, T., 1977. Kumano acidic rocks and Okueyama complex: two
examples of granitic rocks in the outer zone of southwestern Japan. In: Yamada, N. (Ed.),
Plutonism in Relation to Volcanism and Metamorphism, Proceedings of the 7th Circum-
Pacific Plutonism Project Meeting, International Geological Correlation Program, UNESCO,
Toyama, Japan, pp. 127–147.
Bai, C., Greenlangh, S., 2005. 3D multi-step travel time tomography: imaging the local, deep velocity
structure of Rabaul volcano, Papua New Guinea. Phys. Earth Planet. Inter., 151, 259–275.
Barberi, F., Buonasorte, G., Cioni, R., Fiordalisi, A., Foresi, L., Iaccarino, S., Laurenzi, M.A., Sbrana,
A., Vernia, L., Villa, I.M., 1994. Plio-Pleistocene geological evolution of the geothermal area
of Tuscany and Latium. Mem. Descr. Carta Geol. d’It., XLIX, 77–134.
Belousov, A., Walter, T.R., Troll, V.R., 2005. Large scale failures on domes and stratocones situated
on caldera ring faults: san-box modelling of natural examples from kamchatka, Russia. Bull.
Volcanol., 67, 457–468.
Bosworth, W., Burke, K., Strecker, M., 2003. Effect of stress fields on magma chamber stability and
the formation of collapse calderas. Tectonics, 22(4), 1042, doi: 10.1029/2002TC001369.