Page 76 - Carbon Nanotube Fibres and Yarns
P. 76

68    Carbon Nanotube Fibers and Yarns


          room temperature. An average thermal conductivity of 380±15 W/m K was
          measured on ~1.5-mm-long samples using a 3-omega method. Doping
          by iodine increased the electrical conductivity to 5±0.5 MS/m (resistivity
          22±4 μohm cm) and the thermal conductivity to 635 W/m K.


          4.4  Alternative wet-spinning route

          Zhang et al. [15] reported a wet-spinning method to produce pure MWNT
          fibers using ethylene glycol instead of superacid. Ethylene glycol is used
          industrially as a raw material in the manufacture of polyester fibers. The
          carbon nanotubes were dispersed in ethylene glycol to form liquid crys-
          talline dispersions, which was followed by extrusion into a diethyl ether
          bath. Upon entering the ether bath, the ethylene glycol  rapidly diffuses
          out of the extruded CNT fiber into the ether, with ether back-diffusing
          into the fiber. The ether-swollen fibers were then heated at 280°C to re-
          move any residual ethylene glycol. The nanotubes within these fibers were
          found to be highly aligned due to the combination of shear forces and
          the liquid-crystalline phase. The resulting MWNT fibers possessed a high
          electrical conductivity of 80 S/cm, a Young’s modulus of 69±41 GPa and a
          strength of 0.15±0.06 GPa, which were lower than those of the superacid
          solution-spun fibers.


          References

            [1]  W. Lu, M. Zu, J.-H. Byun, B.-S. Kim, T.-W. Chou, State of the art of carbon nanotube
              fibers: opportunities and challenges, Adv. Mater. 24 (14) (2012) 1805–1833.
            [2]  N. Behabtua, M.J. Greena, M. Pasquali, Review: carbon nanotube-based neat fibers,
              Nano Today 3 (5-6) (2008) 24–34.
            [3]  L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, et al., Macroscopic,
              neat, single-walled carbon nanotube fibers, Science 305 (5689) (2004) 1447–1450.
            [4]  B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, et al., Macroscopic
              fibers and ribbons of oriented carbon nanotubes, Science 290 (2000) 1331–1334.
            [5]  B. Vigolo, P. Poulin, M. Lucas, P. Launois, P. Bernier, Improved structure and properties
              of single-wall carbon nanotube spun fibers, Appl. Phys. Lett. 81 (7) (2002) 1210–1212.
            [6]  S. Badaire, V. Pichot, C. Zakri, P. Poulin, P. Launois, J. Vavro, et al., Correlation of prop-
              erties with preferred orientation in coagulated and stretch-aligned single-wall carbon
              nanotubes, J. Appl. Phys. 96 (12) (2004) 7509–7513.
            [7]  A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, et al.,
              Super-tough carbon-nanotube fibres, Nature 423 (2003) 703–706.
            [8]  A.B. Dalton, S. Collins, J. Razal, E. Munoz, V.H. Ebron, B.G. Kim, et al., Continuous
              carbon nanotube composite fibers: properties, potential applications, and problems,
              J. Mater. Chem. 14 (1) (2004) 1–3.
            [9]  E. Munoz, A.B. Dalton, S. Collins, M. Kozlov, J. Razal, J.N. Coleman, et al., Multi-
              functional carbon nanotube composite fibers, Adv. Eng. Mater. 6 (10) (2004) 801–804.
   71   72   73   74   75   76   77   78   79   80   81