Page 33 - Civil Engineering Formulas
P. 33

2
                   R
           Radius of gyration
                    ≈
                         a 2
                   a 2
                         +
                     24
                   −
                           48
                         12r 2
                   6R 2
           Section modulus
                            (approx)
                       180°
                         n
                        cos
                     I
                           AR
                              4
                        R
               I
                 r
                      =
                            =
                =
                 c
               I
                                     h 3 b 1 2  b 1 2  +  6bb 1  +  6b 2  I  h  + 2b 1 2  + 12bb 1 12b 2  h 2  =  c  + 2b 1 )  12 (3b  + b 1 )  6 (2b
           Moment of inertia  a 2 )  −  (6R 2  a 2 )  +  (12r 2  (approx)  +  6bb 1  +  b 1)  +  36 (2b  2b 1  +  3b  h  b 1  +  2b
                  =  A  24  A  =  48  AR 2  =  4  6b 2  I =  1  3
                  I                    h  c =    Geometric properties of sections.
              Equilateral polygon  A = Area R = Rad circumscribed         circle  n = No. of sides  a = Length of side  of octagon  c  b 1  2  FIGURE 2.1
           Section    r = Rad inscribed circle  Axis as in preceding section  b  b 1  2
                                    13
   28   29   30   31   32   33   34   35   36   37   38