Page 34 - Civil Engineering Formulas
P. 34

Radius of gyration  R  a 2  −  6R 2  ≈  2  24  a 2  +  12r 2  48  + 2b 1 2  + 12bb 1 12b 2  + b 1 )  6 (2b






                                       h

                                        h 2 b 1 2
           Section modulus  I  r  I  180°  cos  R  n  AR  (approx)  4  +  6bb 1  +  + 2b 1 )  12 (3b






               I  =  c  =   =         6b 2  =
                                       I  c

                                     h 3 b 1 2
           Moment of inertia  a 2 )  −  (6R 2  a 2 )  +  (12r 2  (approx)  +  6bb 1  +  b 1)  +  36 (2b  2b 1  +  3b  h  b 1  +  2b






                  =  A  24  A  =  48  AR 2  =  4  6b 2  I =  1  c =  3
                  I                    h         Geometric properties of sections.




              Equilateral polygon  A = Area R = Rad circumscribed         circle  n = No. of sides  a = Length of side  of octagon  c  b 1  2  FIGURE 2.1
           Section    r = Rad inscribed circle  Axis as in preceding section  b  b 1  2













                                    13
   29   30   31   32   33   34   35   36   37   38   39