Page 148 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 148

EXERCISES                                                    137

             7. In exercise 4, can you find the expressions for S(i), K(i), C(iji) and C(iji   1) for
               arbitrary i?(*).
             8. Autoregressive models and MATLAB’s Control System Toolbox: consider the follow-
               ing second order autoregressive (AR) model:

                                       1     1
                              xði þ 1Þ¼  xðiÞþ xði   1Þþ wðiÞ
                                       2     4
                                  zðiÞ¼ xðiÞþ vðiÞ

               Using the functions tf() and ss() from the Control Toolbox, convert this AR model
               into an equivalent state space model, that is, x(i þ 1) ¼ Fx(i) þ Gw(i) and
               z(i) ¼ Hx(i) þ v(i). (Use help tf and help ss to find out how these functions
               should be used.) Assuming that w(i)and v(i) are white noise sequences with variances
                2
                         2
                 ¼ 1and   ¼ 1, use the function dlyap() to find the solution of the discrete
                         v
                w
               Lyapunov equation, and the function kalman() (or dlqe()) to find the solution for
               the steady state Kalman gain and corresponding error covariance matrices. Hint: the
               output variable of the command ss() is a ‘struct’ whose fields are printed by typing
               struct(ss). (*).
             9. Moving average models: repeat exercise 8, but now considering the so-called first
               order moving average (MA) model:
                                   1                2
                          xði þ 1Þ¼  ðwðiÞþ wði   1ÞÞ   ¼ 1
                                                    w
                                   2                        ð Þ
                                                    2
                                  zðiÞ¼ xðiÞþ vðiÞ    ¼ 1
                                                    v
            10. Autoregressive, moving average models: repeat exercise 8, but now considering the
               so-called ARMA(2, 1) model:
                           1     1         1               2
                  xði þ 1Þ¼ xðiÞþ xði   1Þþ ðwðiÞþ wði   1ÞÞ   ¼ 1
                                                           w
                           2     2         2                        ð Þ
                                                            2
                                        zðiÞ¼ xðiÞþ vðiÞ     ¼ 1
                                                            v
            11. Simulate the processes mentioned in exercise 1, 8, 9 and 10, using MATLAB, and
               apply the Kalman filters.
   143   144   145   146   147   148   149   150   151   152   153