Page 37 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 37

26                               DETECTION AND CLASSIFICATION

            section discusses the case in which these densities are modelled as
            normal. Suppose that the measurement vectors coming from an object
            with class ! k are normally distributed with expectation vector m and
                                                                       k
            covariance matrix C k (see Appendix C.3):


                                                    T
                                                       1
                                1           ðz   m Þ C ðz   m Þ !
                                                              k
                                                  k
                             ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi exp  k              ð2:17Þ
                 pðzj! k Þ¼ q
                                 N                   2
                             ð2 Þ jC k j
            where N is the dimension of the measurement vector.
              Substitution of (2.17) in (2.12) gives the following minimum error rate
            classification:


                                     ^ ! !ðzÞ¼ ! i  with
                          8                                            9
                                                                !
                          >                         T   1              >
                                1            ðz   m Þ C ðz   m Þ
                          <                                            =
                             ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi exp  k  k   k
               i ¼ argmax q                                       Pð! k Þ
                                 N                   2
                          >                                            >
                             ð2 Þ jC k j
                   k¼1;...;K :                                         ;
                                                                       ð2:18Þ
            We can take the logarithm of the function between braces without
            changing the result of the argmaxfg function. Furthermore, all terms
            not containing k are irrelevant. Therefore (2.18) is equivalent to


                                     ^ ! !ðzÞ¼! i  with
                           1                  1        T   1

             i ¼ argmax   ln jC k jþ ln Pð! k Þ  ðz   m Þ C ðz   m Þ
                                                         k
                                                     k
                                                                 k
                 k¼1;...;K  2                 2
                                                                    T
                                                                        1
                                                              1
                                                          T
                                               T
                                                  1

              ¼ argmax  ln jC k jþ 2ln Pð! k Þ  m C m þ 2z C m   z C z
                                               k  k  k       k  k      k
                 k¼1;...;K
                                                                       ð2:19Þ
            Hence, the expression of a minimum error rate classification with nor-
            mally distributed measurement vectors takes the form of:
                                                    T
                                                           T
                  ^ ! !ðzÞ¼ ! i  with  i ¼ argmaxfw k þ z w k þ z W k zg  ð2:20Þ
                                      k¼1;...;K
   32   33   34   35   36   37   38   39   40   41   42