Page 77 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 77

66                                       PARAMETER ESTIMATION


             (a)                              (b)

             0.2                  MAP          0.5                 MAP
                bias(x)           MMSE             σ(x)            MMSE
                                  ML          0.45                 ML
                                  ulMMSE       0.4                 ulMMSE
                                              0.35
              0
                                               0.3
                                              0.25
                                               0.2
            –0.2
                                              0.15
                                               0.1
                                              0.05
            –0.4                                0
               0    0.2  0.4  0.6   0.8  x  1    0   0.2   0.4  0.6  0.8  x  1
                    backscattering coefficient        backscattering coefficient
            Figure 3.7 The bias and the variance of the various estimators in the backscattering
            problem


                                                   p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                     b MMSE ¼ 0             MMSE ¼   C MMSE ¼ 0:086
                                                   p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                    b ulMMSE ¼ 0           ulMMSE ¼  C ulMMSE ¼ 0:094
                       b ML ¼ 0                    p ffiffiffiffiffiffiffiffiffiffi
                                               ML ¼  C ML ¼ 0:116
                      b MAP ¼ 0:036                p ffiffiffiffiffiffiffiffiffiffiffiffi
                                              MAP ¼  C MAP ¼ 0:087
            From this, and from Figure 3.7, we observe that:

              . The overall bias of the ML estimator appears to be zero. So, in this
                example, the ML estimator is unbiased (together with the two
                MMSE estimators which are intrinsically unbiased). The MAP
                estimator is biased.
              . Figure 3.7 shows that for some ranges of x the bias of the MMSE
                estimator is larger than its standard deviation. Nevertheless, the
                MMSE estimator outperforms all other estimators with respect to
                overall bias and variance. Hence, although a small bias is a desir-
                able property, sometimes the overall performance of an estimator
                can be improved by allowing a larger bias.
              . The ML estimator appears to be linear here. As such, it is comparable
                with the unbiased linear MMSE estimator. Of these two linear esti-
                mators, the unbiased linear MMSE estimator outperforms the ML
                estimator. The reason is that – unlike the ML estimator – the ulMMSE
   72   73   74   75   76   77   78   79   80   81   82