Page 154 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 154

PARAMETRIC LEARNING                                          143

            5.2.1  Gaussian distribution, mean unknown

            Let us assume that under class ! k the measurement vector z is a Gaussian
            random vector with known covariance matrix C k and unknown expect-
            ation vector m . No prior knowledge is available concerning this
                          k
            unknown vector. The purpose is to find an estimator for m .
                                                                 k
              Since no prior knowledge about m is assumed, a maximum likelihood
                                            k
            estimator seems appropriate (Section 3.1.4). Substitution of (5.5) in (3.22)
            gives the following general expression of a maximum likelihood estimator:

                                        (             )
                                          N k
                                          Y
                             ^ m m ¼ argmax  pðz n j! k ; mÞ
                              k
                                    m     n¼1
                                                                        ð5:6Þ
                                        (                 )
                                          N k
                                          X
                               ¼ argmax      lnðpðz n j! k ; mÞÞ
                                    m     n¼1
            The logarithms introduced in the last line transform the product into
            a summation. This is only a technical matter which facilitates the
            maximization.
              Knowing that z is Gaussian, the likelihood of m from a single observ-
                                                        k
            ation z n is:

                                1            1         T   1
                                                          k
                       k
                                                                  k
                                                     k
              pðz n j! k ; m Þ¼ q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi exp   ðz n   m Þ C ðz n   m Þ  ð5:7Þ
                                 N           2
                              ð2 Þ jC k j
            Upon substitution of (5.7) in (5.6), rearrangement of terms and elimin-
            ation of irrelevant terms, we have:
                           (                       )
                             N k
                             X         T
                                          1
                ^ m m ¼ argmin  ðz n   mÞ C ðz n   mÞ
                 k                       k
                       m     n¼1
                                                                        ð5:8Þ
                           (                                      )
                             N k          N k            N k
                                                                1
                                     1
                                                  1
                                               T
                             X            X             X
                                 T
                                                             t
                  ¼ argmin      z C z n þ    m C m   2      z C m
                                                 k
                                 n
                                                               k
                                    k
                                                             n
                       m     n¼1          n¼1            n¼1
            Differentiating the expression between braces with respect to m (Appen-
            dix B.4) and equating the result to zero yields the average or sample
            mean calculated over the training set:
                                           1  X
                                              N k
                                      ^ m m ¼    z n                    ð5:9Þ
                                       k
                                          N k
                                              n¼1
   149   150   151   152   153   154   155   156   157   158   159