Page 207 - Compact Numerical Methods For Computers
P. 207

196               Compact numerical methods for computers
                           Example 15.1. Illustration of the variable metric algorithm 21

                           The following output from an IBM 370/168 operating in single precision (six
                           hexadecimal digits) was produced by a FORTRAN version of algorithm 21 as it
                           minimised the Rosenbrock banana-shaped valley function (Nash 1976)


                           using analytic derivatives. The starting point b =-1·2, b =1 was used.
                                                                   1
                                                                            2
                                 # ITNS=  1     #  EVALNS=  1  FUNCTION=  0.24199860E+02
                                 # ITNS=  2     #  EVALNS=  6  FUNCTION=  0.20226822E+02
                                 # ITNS=  3     #  EVALNS=  9  FUNCTION=  0.86069937E+01
                                 # ITNS=  4     #  EVALNS=  14  FUNCTION=  0.31230078E+01
                                 # ITNS=  5     #  EVALNS=  16  FUNCTION=  0.28306570E+01
                                 # ITNS=     6  #  EVALNS=  21  FUNCTION=  0.26346817E+01
                                 # ITNS=     7  #  EVALNS=  23  FUNCTION=  0.20069408E+01
                                 # ITNS=  8     #  EVALNS=  24  FUNCTION=  0.18900719E+01
                                 # ITNS=  9     #  EVALNS=  25  FUNCTION=  0.15198193E+01
                                 # ITNS=  10    #  EVALNS=  26  FUNCTION=  0.13677282E+01
                                 # ITNS=  11    #  EVALNS=  27  FUNCTION=  0.10138159E+01
                                 # ITNS=  12    #  EVALNS=  28  FUNCTION=  0.85555243E+00
                                 # ITNS=  13    #  EVALNS=  29  FUNCTION=  0.72980821E+00
                                 # ITNS=  14    #  EVALNS=  30  FUNCTION=  0.56827205E+00
                                 # ITNS=  15    #  EVALNS=  32  FUNCTION=  0.51492560E+00
                                 # ITNS=  16    #  EVALNS=  33  FUNCTION=  0.44735157E+00
                                 # ITNS=  17    #  EVALNS=  34  FUNCTION=  0.32320732E+00
                                 # ITNS=  18    #  EVALNS=  35  FUNCTION=  0.25737345E+00
                                 # ITNS=  19    #  EVALNS=  37  FUNCTION=  0.20997590E+00
                                 # ITNS=  20    #  EVALNS=  38  FUNCTION=  0.17693651E+00
                                 # ITNS=  21    #  EVALNS=  39  FUNCTION=  0.12203962E+00
                                 # ITNS=  22    #  EVALNS=  40  FUNCTION=  0.74170172E-01
                                 # ITNS=  23    #  EVALNS=  41  FUNCTION=  0.39149582E-01
                                 # ITNS=  24    #  EVALNS=  43  FUNCTION=  0.31218585E-01
                                 # ITNS=  25    #  EVALNS=  44  FUNCTION=  0.25947951E-01
                                 # ITNS=  26    #  EVALNS=  45  FUNCTION=  0.12625925E-01
                                 # ITNS=  27    #  EVALNS=  46  FUNCTION=  0.78500621E-02
                                 # ITNS=  28    #  EVALNS=  47  FUNCTION=  0.45955069E-02
                                 # ITNS=  29    #  EVALNS=  48  FUNCTION=  0.15429037E-02
                                 # ITNS=  30    #  EVALNS=  49  FUNCTION=  0.62955730E-03
                                 # ITNS=  31    #  EVALNS=  50  FUNCTION=  0.82553088E-04
                                 # ITNS=  32    #  EVALNS=  51  FUNCTION=  0.54429529E-05
                                 # ITNS=  33    #  EVALNS=  52  FUNCTION=  0.57958061E-07
                                 # ITNS=  34    #  EVALNS=  53  FUNCTION=  0.44057202E-10
                                 # ITNS=  35    #  EVALNS=  54  FUNCTION=  0.0
                                 # ITNS=  35    #  EVALNS=  54  FUNCTION=  0.0
                                   B(   1)=   0.10000000E+01
                                   B(   2)=   0.10000000E+01
                                 # ITNS=  35    #  EVALNS=  54  FUNCTION=  0.0
   202   203   204   205   206   207   208   209   210   211   212