Page 217 - Compact Numerical Methods For Computers
P. 217

206               Compact numerical methods for computers
                                      2 31   5.76718E-04
                                      3 31   5.76718E-04
                                      4 42   5.76716E-04
                                      5 42   5.76716E-04
                                      6 45   5.76713E-04
                                      7 45   5.76713E-04
                                      8  48  5.76711E-04
                                      9  48  5.76711E-04
                                     CONVERGED TO 5.76711E-04   # lTNS= 10  # EVALS= 50
                                     # EFES= 290
                                     B( 1 )= 167.85    G( 1 )= .148611
                                     B( 2 )= .900395    G( 2 )= 194.637
                                     B( 3 )= 167.85    G( 3 )= .148611
                                     B( 4 )= .900721    G( 4 )= 206.407
                                     B( 5 )=-99.69    G( 5 )= .148626
                                     B( 6 )= 167.85   G( 6 )= .145611
                                     B( 7 )= .900675    G( 7 )= 204.746
                                     B( 8 )=-74.33    G( 8 )= .148626
                                     B( 9 )= 167.85    G( 9 )= .148611
                                     B( 10 )= .900153    G( 10 )= 185.92
                                     B( 11 )=-4.79994    G( 11 )= 2.22923
                                     B( 12 )=-1.02951    G( 12 )= 17.7145
                                     B( 13 )=-.999114    G( 13 )= 31.9523
                                     B( 14 )= 3.42012    G( 14 )= 4.42516
                                     B( 15 )=-65.1549    G( 15 )= 2.22924
                                     B( 16 )=-.726679    G( 16 )= 119.818
                                     B( 17 )=-.114509    G( 17 )= 157.255
                                     B( 19 )=-20.8499   G( 18 )= 3.5103
                                     B( 19 )= 1.21137    G( 19 )= 410.326
                                     B( 20 )=-2.84145    G( 20 )= 308.376
                                     B( 21 )= 31.6001    G( 21 )= 4.42516
                                     B( 22 )=-20.6598    G( 22 )= 4.36376
                                     B( 23 )=-8.54979    G( 23 )= 7.66536
                                     STOP AT 0911
                                     *SIZE
                                     USED: 3626  BYTES
                                     LEFT: 5760  BYTES
                                     *


                               An earlier solution to this problem, obtained using a Data General NOVA
                             operating in 23 binary digit arithmetic, had identical values for the parameters B
                             but quite different values for the gradient components G. The convergence
                             pattern of the program was also slightly different and had the following form:

                                      0   1   772741
                                      1   21   5.59179E-4
                                      2   22   5.59179E-4
                                     CONVERGED TO  5.59179E-4    # ITNS= 3    # EVALS= 29


                               In the above output, the quantities printed are the number of iterations
                             (gradient evaluations), the number of function evaluations and the lowest function
                             value found so far. The sensitivity of the gradient and the convergence pattern to
                             relatively small changes in arithmetic is, in my experience, quite common for
                             algorithms of this type.
   212   213   214   215   216   217   218   219   220   221   222