Page 86 - Complementarity and Variational Inequalities in Electronics
P. 86

A Variational Inequality Theory Chapter | 4 77


                                          n
                            c) If D(  ∞ ) = R , then
                                                    B(M, ) = ker(M).
                                          n
                            d) If D(  ∞ ) = R and M is invertible, then
                                                      B(M, ) ={0}.
                            e) If D( ) is bounded, then

                                                      B(M, ) ={0}.

                            f) If (M, ) ∈ PD0 n ∪ P0 n , then
                                           B(M, ) = D( ) ∞ ∩ N 0 (M) ∩ K(M, ).

                            g) If (M, ) ∈ PS0 n , then

                                                    B(M, ) = ker(M).
                           Proof. a) Part (a) is a direct consequence of the definition of the set B(M, ).
                                                                                     ∗
                           b) Part (b) is a direct consequence of Proposition 14.c)Here (D(  ∞ )) ={0}
                           and K(M, ) = ker(M) ⊂ N − (M).Wealsohave D(  ∞ ) ⊂ D( ) ∞ so that
                                      n
                           D( ) ∞ = R . Thus B(M, ) = ker(M). d) Part (d) is a direct consequence of
                           part (c). e) If D( ) is bounded, then D( ) ∞ ={0}.f)If (M, ) ∈ PD0 n , then

                                               (∀x ∈ D( ) ∞ ) : Mx,x ≥ 0,
                           and thus

                                           D( ) ∞ ∩ N − (M) = D( ) ∞ ∩ N 0 (M).
                           Let us now suppose that (M, ) ∈ P0 n .Let w ∈ B(M, ). It suffices to check
                           that  Mw,w = 0. We know that
                                                 Mw,h ≥ 0,∀h ∈ D(  ∞ ).

                                                            j
                                                               j
                           Let j ∈{1,...,n}.Wemayset h = w,e  e to get
                                                     (Mw) j w j ≥ 0.
                           This last relation holds for all j ∈{1,...,n}, and since

                                                             n

                                              0 ≥ Mw,w =      (Mw) j w j ,
                                                            j=1
                           we finally obtain that  Mw,w = 0. g) Part (g) is a direct consequence of
                           part (c).
   81   82   83   84   85   86   87   88   89   90   91