Page 188 - Computational Fluid Dynamics for Engineers
P. 188

Problems                                                              175



         5-6.  For  two-dimensional  inviscid  flows,  Eq.  (2.2.30)  can  be  written  as
                                    3Q    9 |   9 ^
                                                                          (P5.6.1)
                                    dt    dx    dy

         where  Q,  E  and  F  are  given  by Eq.  (2.2.32a). It  can  also be written  in the  form
                                  dQ      dQ     dQ                       t


         with  the  Jacobian  matrices  A  and  B  of the  flux  vectors  E  and  F  defined  by


                                                                          (P5.6.3)
                                        dcy        dQ
         Show that  for  a  perfect  gas,  A  and  B  can  be  written  as

                              0                    1       0             0
                           2
                        ^ M  +      ^           (3 — 7)M       (1 — j)v  7  —1
             A
                            —uv                    v             u       0
                                                    3
                                                      2
                                                           2
                                    2
                                         2
                    *f  + (7 -  1M«  + v ) f  +  V( «  + v ) (! -  7)«v  7«
                                                                          (P5.6.4)
                              0               0              1           0
                            —uv               v              u           0
             B
                                           (1  — 7)7/     (3  — 7)1;    7  —  1
                                                                    2
                                        2
                        +  (7  -  l)v(u 2  +  i; )  (1 -  j)uv  ^  +  ^ ( 3 i ;  2  +  u )  *yv
                                                                          (P5.6.5)
         5-7.  Apply  the  von  Neumann  stability  analysis  to  show  that  the  Euler  explicit
        method,  Eq.  (5.7.17),  is  unstable.

         5-8.  Show that  the  implicit  method

                              ,.n+l
                                    ^   + \Kti-^       u   0
                                 At                 i-i
        for  Eq.  (5.1.1)  is unconditionally  stable.

         5-9.  Show  that  the  explicit  upwind  method,  Eq.  (5.5.1)  is stable  0  <  a  <  1.


         5-10.  Show  that
                                    u(x,t)  = f(x-ct)                     (P5.10.1)

        satisfies  the  linear  convection  Eq.  (5.1.1)  and  the  initial  condition
                                      u(x,0)  =  f(x)                    (P5.10.2)
   183   184   185   186   187   188   189   190   191   192   193