Page 296 - Computational Fluid Dynamics for Engineers
P. 296

286                                                      9.  Grid  Generation



         V\%VX\ViVVVy%tV%VVM\NVV%VV^  \vVVVVXVVXVVNVVyXVXVVNVVXVN^NVM.
                              (y =  +*)
                                                                   (ri=D
                                B  _
                                         E  x
                    (ln2,0)
                                                r            H ,6  (n = 0)    L
                                        F
         mUUlUVUVUmmUVUlUmUlUU  TFWTOTW
         (a)                                    (b)


























         (c)                                   (d)
         Fig.  9.15.  Wind  tunnel  mapping  for  an  airfoil:  (a)  physical  plane,  (b)  computational
        plane.  C-grid  generated  around  a  NACA  airfoil  using  the  wind  tunnel  mapping  for  an
         airfoil  (c)  physical  plane,  (d)  physical  plane,  close-up  of the  grid  near  the  airfoil.


           To  express  the  variables  x  and  y  as  functions  of  £ and  77, the  real  and  imag-
        inary  parts  of  (9.6.14)  are  equated  and  the  expressions  solved  for  x  and  y:
                                        1
                                    x=-]n(Kf    +  Ki)                   (9.6.17a)

                                                K2
                                     y  =  tan                           (9.6.17b)
                                                Ki
        Where:
                              K\  — e  cos y  — 1 — cosh £ cos  77       (9.6.18a)
                                K2  — e x  sin y  — — sinh £ sin  77     (9.6.18b)
        The  inverse  transformation  or  expressions  of  £  and  rj in  terms  of  x  and  y  can
        be  obtained  in the  form:
                                    £ = - l n ( D §  +  L>|)             (9.6.19a)
   291   292   293   294   295   296   297   298   299   300   301