Page 302 - Computational Modeling in Biomedical Engineering and Medical Physics
P. 302
Hyperthermia and ablation 291
Jain, T.K., Morales, M.A., Sahoo, S.K., Leslie-Pelecky, D.L., Labhasetwar, V., 2005. Iron oxide nanopar-
ticles for sustained delivery of anticancer agents. Mol. Pharm. 2 (3), 194 205.
Jin, S., Wang, X., Yuan, M., Zheng, A., 2014. Hyperthermia ablation of breast tumors using ultrasoundMay 9
BEE 4530 Computer-Aided Engineering: Applications to Biomedical Processes. Cornell University.
Johannsen, M., Thiesen, B., Wust, P., Jordan, A., 2010. Magnetic nanoparticle hyperthermia for prostate
cancer. Int. J. Hyperth. 26 (8), 790 795.
Jolesz, F.A., 2009. MRI-guided focused ultrasound surgery. Annu. Rev. Med. 60, 417 430.
Karampatzakis, A., Kühn, S., Tsanidis, G., Neufeld, E., Samaras, T., Kuster, N., 2013. Heating character-
istics of antenna arrays used in microwave ablation: A theoretical parametric study. Comput. Biol.
Med. 43 (10), 1321 1327.
Knavel, E.M., Brace, C.L., 2013. Tumor ablation: common modalities and general practices. Tech. Vasc.
Interv. Radiol 16 (4), 192 200.
Koda, M., Tokunaga, S., Matono, T., Sugihara, T., Nagahara, T., Murawaki, Y., 2011. Comparison
between different thickness umbrella shaped expandable radiofrequency electrodes (SuperSlim and
CoAccess): experimental and clinical study. Exp. Therapeutic Med. 2, 1215 1220.
Kumar, C.S.S.R., Faruq, M., 2011. Magnetic nanomaterials for hyperthermia-based therapy and con-
trolled drug delivery. Adv. Drug. Delivery Rev. 63 (9), 789 808.
Layton, A.T., September 2013. Mathematical modeling of kidney transport. Rev. Syst. Biol. Med. 5 (5),
557 573. Wiley Interdiscip.
Lepock, J.R., 2003. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage.
Int. J. Hyperth. 19, 252 266.
Lepock, J.R., 2005. How do cells respond to their thermal environment? Int. J. Hyperth. 21, 681 687.
Maeshima, Y., Makino, H., 2010. Angiogenesis and chronic kidney disease. Fibrogenesis & Tissue
Repair. 3 (13), 1 17.
Maloney, E., Hwang, J.H., 2015. Emerging HIFU applications in cancer therapy. Int. J. Hyperth. 31 (3),
302 309.
Mayo Clinic, Cryoablation of Cancer. ,https://www.mayoclinic.org/tests-procedures/cryoablation-for-
cancer/about/pac-20385216 . .
Mayo Clinic, ,https://www.mayoclinic.org/tests-procedures/radiofrequency-ablation/about/pac-
20385270.. Accessed in August 2020.
Michaelson, S., Lin, J.C., 1987. Biological Effects and Health Implications of Radio Frequency
Radiation. Plenum, New York.
Miles, C.A., 2006. Relating cell killing to inactivation of critical components. Appl. Environ. Microbiol.
72, 914 917.
Moran, C.H., Wainerdi, S.M., Cherukuri, T.K., Kittrell, C., Wiley, B.J., 2009. Size-dependent Joule
heating of gold nanoparticles using capacitively coupled radiofrequency fields. Nano Res. 2,
400 405.
Morega, M., Mogos, L., Neagu, M., Morega, A.M., 2006. Optimal design for microwave hyperthermia
applicator. In: Proceedings of the 11th International Conference on Optimization of Electrical and
Electronic Equipment—OPTIM 2006, Brasov, Romania, pp. 219 224.
Morega, M., Neagu, M., Morega, A.M., 2008. Bidirectional coupling of electromagnetic and thermal
processes in radiofrequency hyperthermia. In: Proceedings of the 12th International Conference on
Optimization of Electrical and Electronic Equipment—OPTIM 2008, Brasov, Romania,
pp. 257 262.
Morega, A.M., Dobre, A.A., Morega, M., 2010. Numerical simulation of magnetic drug targeting with
flow structural interaction in an arterial branching region of interest. In: Comsol Conferene, Versailles,
France, 17 19 Nov., 2010.
Morega, M., Morega, A.M., Diaz, M.I., Sandoiu, A.M., 2014. Percutaneous microwaves hyperthermia
study by numerical simulation. In: Proceedings of the Internatinal Conference. and Exposition on
Electrical and Power Engineering—EPE 2014, Iasi, Romania, pp. 498 503.
Morega, M., Morega, A.M., Sandoiu, A.M., 2015a. Sensitivity to parameters variation in numerical simu-
lation of microwave thermotherapy. In: The 9th International Symposium on Advanced Topics in
Electrical Engineering, IEEE ATEE, May 7 9, Bucharest, Romania.