Page 67 - Computational Retinal Image Analysis
P. 67

References   57




                   [50a]  A.G. Podoleanu, G.M. Dobre, R. Cernat, J.A. Rogers, P. Justin, R.B. Rosen, P. Garcia,
                       Investigations of the eye fundus using a simultaneous optical coherence tomography/
                       indocyanine green fluorescence imaging system, J. Biomed. Opt. 12 (1) (2007) 014019.
                    [51]  V. Srinivasan, D. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. Schuman, J. Fujimoto,
                       Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging
                       of the retina and optic nerve head, Invest. Ophthalmol. Vis. Sci. 49 (2008) 5103–5110.
                    [52]  S. Jiao, C. Wu, R.W. Knighton, G. Gregori, C.A. Puliafito, Registration of high-density
                       cross sectional images to the fundus image in spectral-domain ophthalmic optical co-
                       herence tomography, Opt. Express 14 (2006) 3368–3376.
                    [53]  M. Pircher, B. Baumann, E. Götzinger, C.K. Hitzenberger, Imaging the human retina
                       and cone mosaic in vivo with PS-OCT, Proc. SPIE 6429 (2007) 64290T.
                    [54]  M.  Wojtkowski, V.  Srinivasan,  T.  Ko, A.K.J.  Fujimoto, J.  Duker, Ultrahigh resolu-
                       tion, high-speed, FD-OCT and methods for dispersion compensation, Opt. Express 12
                       (2004) 2404–2422.
                    [55]  M. Choma, M. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and
                       Fourier domain optical coherence tomography, Opt. Express 11 (2003) 2183–2189.
                    [56]  S. Rivet, M. Maria, A. Bradu, T. Feuchter, L. Leick, A. Podoleanu, Complex master
                       slave interferometry, Opt. Express 24 (2016) 2885–2904.
                    [57]  A.  Bradu, N.  Israelsen, M.  Maria, M.  Marques, S.  Rivet,  T.  Feuchter, O.  Bang,
                       A. Podoleanu, Recovering distance information in spectral domain interferometry, Sci.
                       Rep. 8 (2018) 15445.
                    [58]  A.  Bradu, S.  Rivet,  A.  Podoleanu, Master/slave interferometry—ideal tool for coher-
                       ence revival swept source optical coherence tomography, Biomed. Opt. Express 7 (2016)
                       2453–2468.
                    [59]  L. Pierro, E. Zampedri, P. Milani, M. Gagliardi, V. Isola, A. Pece, Spectral domain OCT
                       versus time domain OCT in the evaluation of macular features related to wet age-related
                       macular degeneration, Clin. Ophthalmol. 6 (2012) 219–223.
                    [60]  G.  Dobre,  A.  Podoleanu, R.  Rosen, Simultaneous optical coherence tomography–
                       indocyanine green dye fluorescence imaging system for investigations of the eye’s fun-
                       dus, Opt. Lett. 30 (2005) 58–60.
                    [61]  J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. Sorenson, A. Fawzi, R. Linsenmeier,
                       H. Zhang, Visible light optical coherence tomography measures retinal oxygen meta-
                       bolic response to systemic oxygenation, Light Sci. Appl. 4 (2015) e334.
                    [62]  X. Shu, L. Beckmann, H. Zhang, Visible-light optical coherence tomography: a review,
                       J. Biomed. Opt. 22 (2017) 121707.
                    [63]  X.R. Huang, Polarization properties of the retinal nerve fiber layer, Bull. Soc. Belge
                       Ophtalmol. (302) (2006) 71–88.
                    [64]  K.M. Twietmeyer, R.A. Chipman, A.E. Elsner, Y. Zhao, D. VanNasdale, Mueller ma-
                       trix retinal imager with optimized polarization conditions, Opt. Express 16 (2008)
                       21339–21354.
                    [65]  X.-R. Huang, R.W. Knighton, Linear birefringence of the retinal nerve fiber layer measured
                       in vitro with a multispectral imaging micropolarimeter, J. Biomed. Opt. 7 (2002) 199–204.
                    [66]  P. Cimalla, J. Walther, M. Mittasch, E. Koch, Shear flow-induced optical inhomogene-
                       ity of blood assessed in vivo and in vitro by spectral domain optical coherence tomog-
                       raphy in the 1.3 μm wavelength range, J. Biomed. Opt. 16 (2011) 116020.
                    [67]  X.-M. Hu, J.-M. Wu, J.-L. Suo, Q.-H. Dai, Emerging theories and technologies on
                       computational imaging, Front. Inf. Technol. Electron. Eng. 18 (2017) 1207–1221.
   62   63   64   65   66   67   68   69   70   71   72