Page 67 - Computational Retinal Image Analysis
P. 67
References 57
[50a] A.G. Podoleanu, G.M. Dobre, R. Cernat, J.A. Rogers, P. Justin, R.B. Rosen, P. Garcia,
Investigations of the eye fundus using a simultaneous optical coherence tomography/
indocyanine green fluorescence imaging system, J. Biomed. Opt. 12 (1) (2007) 014019.
[51] V. Srinivasan, D. Adler, Y. Chen, I. Gorczynska, R. Huber, J. Duker, J. Schuman, J. Fujimoto,
Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging
of the retina and optic nerve head, Invest. Ophthalmol. Vis. Sci. 49 (2008) 5103–5110.
[52] S. Jiao, C. Wu, R.W. Knighton, G. Gregori, C.A. Puliafito, Registration of high-density
cross sectional images to the fundus image in spectral-domain ophthalmic optical co-
herence tomography, Opt. Express 14 (2006) 3368–3376.
[53] M. Pircher, B. Baumann, E. Götzinger, C.K. Hitzenberger, Imaging the human retina
and cone mosaic in vivo with PS-OCT, Proc. SPIE 6429 (2007) 64290T.
[54] M. Wojtkowski, V. Srinivasan, T. Ko, A.K.J. Fujimoto, J. Duker, Ultrahigh resolu-
tion, high-speed, FD-OCT and methods for dispersion compensation, Opt. Express 12
(2004) 2404–2422.
[55] M. Choma, M. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and
Fourier domain optical coherence tomography, Opt. Express 11 (2003) 2183–2189.
[56] S. Rivet, M. Maria, A. Bradu, T. Feuchter, L. Leick, A. Podoleanu, Complex master
slave interferometry, Opt. Express 24 (2016) 2885–2904.
[57] A. Bradu, N. Israelsen, M. Maria, M. Marques, S. Rivet, T. Feuchter, O. Bang,
A. Podoleanu, Recovering distance information in spectral domain interferometry, Sci.
Rep. 8 (2018) 15445.
[58] A. Bradu, S. Rivet, A. Podoleanu, Master/slave interferometry—ideal tool for coher-
ence revival swept source optical coherence tomography, Biomed. Opt. Express 7 (2016)
2453–2468.
[59] L. Pierro, E. Zampedri, P. Milani, M. Gagliardi, V. Isola, A. Pece, Spectral domain OCT
versus time domain OCT in the evaluation of macular features related to wet age-related
macular degeneration, Clin. Ophthalmol. 6 (2012) 219–223.
[60] G. Dobre, A. Podoleanu, R. Rosen, Simultaneous optical coherence tomography–
indocyanine green dye fluorescence imaging system for investigations of the eye’s fun-
dus, Opt. Lett. 30 (2005) 58–60.
[61] J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. Sorenson, A. Fawzi, R. Linsenmeier,
H. Zhang, Visible light optical coherence tomography measures retinal oxygen meta-
bolic response to systemic oxygenation, Light Sci. Appl. 4 (2015) e334.
[62] X. Shu, L. Beckmann, H. Zhang, Visible-light optical coherence tomography: a review,
J. Biomed. Opt. 22 (2017) 121707.
[63] X.R. Huang, Polarization properties of the retinal nerve fiber layer, Bull. Soc. Belge
Ophtalmol. (302) (2006) 71–88.
[64] K.M. Twietmeyer, R.A. Chipman, A.E. Elsner, Y. Zhao, D. VanNasdale, Mueller ma-
trix retinal imager with optimized polarization conditions, Opt. Express 16 (2008)
21339–21354.
[65] X.-R. Huang, R.W. Knighton, Linear birefringence of the retinal nerve fiber layer measured
in vitro with a multispectral imaging micropolarimeter, J. Biomed. Opt. 7 (2002) 199–204.
[66] P. Cimalla, J. Walther, M. Mittasch, E. Koch, Shear flow-induced optical inhomogene-
ity of blood assessed in vivo and in vitro by spectral domain optical coherence tomog-
raphy in the 1.3 μm wavelength range, J. Biomed. Opt. 16 (2011) 116020.
[67] X.-M. Hu, J.-M. Wu, J.-L. Suo, Q.-H. Dai, Emerging theories and technologies on
computational imaging, Front. Inf. Technol. Electron. Eng. 18 (2017) 1207–1221.